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Past

The beginnings of use of satellite data in
numerical weather prediction

Jule Charney’s vision

(Also his desertification theory for the Sahel)
Controversy with NMC (now NCEP)

Bob Atlas will talk more about this...

Satellite data helped in SH but had little
impact in NH until radiances were used



Jule Charney was the NWP super hero...




Use of Incomplete Historical Data to Infer the Present State of the Atmosphere

J. Cuanney, M. HaLem® ANDp R. JasTROW!
Dept. of Meteorolegy, Massschuselts Inatitute of Technglopy, Cambridge, Mass.
22 August 1969

Charney et al. (1969) showed that
Inserting satellite temperatures would
provide information on winds and sea

level pressure
(but not of winds in the tropics!)
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Fic. 2. Same as Fig. 1 for the equator.
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Fro. 3. The rms error in sea Jevel pressure anomaly (mb) for
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0.25, 0.5 and 1C random error perturbations are inserted every
12 br at all grid points.



Nimbus 2/3 provides first annual net radiation budget:
Raschke , Bandeen and Van Der Haar
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F'16. 17, Annual radiation balance of the earth-atmosphere system.

Charney saw that subtropical deserts were a radiative sink
anomaly, and came up with the idea of albedo-feedback



The Sahel had suffered a long-term reduction in

precipitation
I

(a) The entire Sahel (20°W - 20°E; 10°N - 20°N)
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Charney: Deserts have a net loss of energy because of high
albedo, which in turn increases subsidence and reduces rain.
=> |n the Sahel, overgrazing increased albedo and Charney’s
albedo-rain positive feedback increases desertification!



NWS, Tracton et al., 1980: a
devastating paper (but see Atlas)

Satellite data impacts with the Data
System Tests of 1975 and 76:

MONTHLY WEATHER REVIEW

 “Overall the impact of the remote
soundings in the NH was negligible,

* but the amplitude of weather
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systems in SAT were consistently

weaker than in NOSAT”.
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Halem, Kalnay,
Baker and Atlas,
1982: first FGGE

satellite data
impact study.

¢__GARP %) TOPICS =

No. 72 | April 1982

An occasional series reporting on U.S, and international GARP scientific, technical, and planning
activities, developments, and programs, presented as a public service to the meteorological com-
munity by the American Meteorologica! Society through arrangements with the U.S, Committee
on the Global Atmospheric Research Program of the National Academy of Sciences-National
Research Council. Opinions expressed in “GARP Topics” do not necessarily reflect the point of
view of the U.S. Committee.

An Assessment of the FGGE Satellite
Observing System during SOP-1

M. Halem, E. Kalnay, W. E. Baker, and R. Atlas

Goddard Laboratory for Atmospheric Sciences ( GLAS)
NASA Goddard Space Flight Center, Greenbelt, Md. 20771
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A figure that saved
satellite data impact!

The figure shows the analysis
correction to the 6 hour forecast
for SAT and NOSAT
Large corrections in west coast
in NOSAT, smaller in SAT.
Over the oceans, no corrections
in NOSAT, small corrections in
SAT

This result impressed Norm
Phillips very much and
convinced him and others of the
utility of satellite datal!
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The forecast impact in the NH was mixed, slightly
positive. In the SH it was very clearly positive
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Fig. 11, Syskill scores for 72 h forecasts from the FGGE, NOSAT, and NORAOB systems over North
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Why the small impact in the NH with retrievals? TOVS
and MSU have only ~4-5 “pieces of information”, the

rest came from climatology!
- TIINNN——
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(With AIRS we don’t need additional information!)

\/ Example Channel Kernel Functions, K, ;

for Temperature and Moisture

AIRS 15 um (650-800 cm-1) band AIRS 6.7 um (1200-1600 cm™!) band
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Derber and Wu (1998) (almost two decades later!)
Impact of using TOVS radiances compared with retrievals:
It doubled the large positive impact in the SH
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FiG. 9. Same as in Fig. 8 except for Southern Hemisphere.



Derber and Wu (1998): TOVS radiances gave for the
first time a clear positive impact in the NH!!!
D
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F1G. 8. Northern Hemisphere anomaly correlations (a) and rms errors (b) for 5-day forecasts from NOSAT, RAD, RET, and RET?2 experi-
ments. Results are averages over 21 forecasts (29 July 1995~18 August 1995).



Present

Satellite data use in numerical weather
prediction is mature

SH skill is similar now to NH

Wonderful impact of AIRS

What has brought these impressive
improvements?



Data Assimilation: We need to improve
observations, analysis scheme and model
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Comparisons of Northern and Southern Hemispheres
N ——

Anomaly correlation (%) of 500hPa height forecasts
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Thanks to satellite data the SH has
improved even faster than the NH!



We are getting better... (NCEP observational increments)
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Current results: Satellite radiances are
essential in the SH, more important than
rawinsondes in the NH!

FORECAST VERFICATION
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More and more satellite radiances...

quantity of satellite data used per day at ECMWF

O CONV+SAT
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B TOTAL

number of data used per day (millions)
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Year



Some comparisons...

ECMWEF scores compared to other major global centre:

R.m.s. error (hPa) of surface-pressure forecasts for three and five days ahead
e ECMWF UK USA JAPAN

D+5

4

3 D+3
1989 1991 1993 1995 1997 1999 2001 2003 2005 2007

ECMWF i‘:

The largest improvements have come from AMSU and 4D-Var
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AIRS Data Significantly Improves NCEP

Operational Forecast
IIINNN—

Initial inclusion of AIRS data Utilizing All AIRS Footprints
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Bulletin of the American Meteorological Society, 87, 891-894, doi: 10.1175/BAMS-87-7-891
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AIRS Data Significantly Improves NCEP

Operational Forecast
C—

Initial inclusion of AIRS data Utilizing All AIRS Footprints
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“The forecast improvement accomplishment alone makes the AIRS project well worth
the American taxpayers’ investment” (Mary Cleave, associate administrator for NASA's
Science Mission Directorate).

“This AIRS instrument has provided the most significant increase in forecast

improvement in this time range of any other single instrument,” (Conrad Lautenbacheré
NOAA administrator). 6



The future

New data assimilation approach:
Ensemble Kalman Filter

Faster, cheaper, better...
Whitaker results: it beats operational GSI

Ability to find observations that are not
helping
Estimating forecast errors



Data Assimilation: We need to improve
observations, analysis scheme and model
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Data Assimilation: We need to improve
observations, analysis scheme and model

I
needﬂnd profiles!

OBSERVATIONS )6 hr forecast ]
1
ANALYSIS

EnKF! l

QODEL




Ensemble Kalman Filter uses obs more efficiently

3D-Var LETKF

BgErr (shaded) and Aninc for 3DVar [q3,t245,640] BgErr (shaded) and Aninc for LEKF [q3,mp,t245,640,L30,r.8]
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The colors show the 12 hour forecast errors (background error), the
contours the analysis corrections. The LETKF (an Ensemble
Kalman Filter) knows about “the errors of the day” As a result the
corrections are stretched like the errors and extract information
from the observations much more efficiently
Corazza et al., 2007



Whitaker: Comparison of T190, 64 members EnKF with

NCEP T382 operational GSI, same observations
©NN—

Wind Speed Differences: Observed Minus Forecast
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2008010718. Observations are aggregated in 100 hPa layers. The red curve is for the ensemble mean of the experimental 64-
member T190 EnKF system, and the blue curve is for the T382 GSl-based GDAS system operational in December 2007.



Comparison of 4-D Var and LETKF at JMA
18th typhoon in 2004, IC 12Z 8 August 2004
T. Miyoshi and Y. Sato
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New applications: Assimilate AIRS Level 2 CO, with
Ensemble Kalman Filter into CAM 3.5
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Single CO, Analysis Step
May 2003

350 hPa CO, analysis increment (ppm) CO, at 00Z01May2003 (+3hour) after QC

350hPa CO2 analysis increment (ppm) AIRS CO2 location and values
90N .* .
ES ’ ° ¢ og.° °
60N A ¥ ‘e
B - « a2
. {*‘ 5 ){ 3 s
| . 3
30N & * %;,‘ . >
o ¢ 9 P\ e =
EQ{, i ¢ 78
\ W %Q:‘?
3051 2
L A -
o ¢
60S - ) ®° » 4
o “‘.0. o_,o...'? e toe
0S¢ 60F 1208 180 120W oW 60E 120E 180 120W 60W 0
S ) 5 N N N N N N N B
—0.6-0.5-0.4-0.3-0.2-0.+0.050.00.010.05 0.1 0.2 0.3 0.4 0.5 0.6 367.5 369 370.5 372 373.5 375 376.5 378 379.5 381 362.5 384

* Analysis increment= analysis - background forecast
« Spatial pattern of analysis increment follows the observation coverage.
* Propagates observation information horizontally knowing “errors of the day”.

Junjie Liu and Inez Fung (UC Berkeley), Eugenia Kalnay (UMCP)



CO, Difference between CO, Assimilation Run

and Meteorological (Control) Run
May 2003

N
o
(@]

300 +

400

500 1
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700
800 +
900 1

90S

pressure (hPa)

ppm
1. Adjustment by AIRS CO, spans from 800hPa to 100hPa

2. The adjustment is larger in the NH

Junjie Liu and Inez Fung (UC Berkeley), Eugenia Kalnay (UMCP)



Current Upper Air Mass & Wind
Data Coverage

Obs Type

@ szrvsamsua 0 csssmisamsua @ 0 NIT-AMSUA
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ECMWF Data Coverage (All obs DA) - ATOVS
19/DEC/2006; 00 UTC

Total number of obs = 409202

Upper Air
Mass Observations

Obs Type

ECMWF Data Coverage (All obs DA) - TEMP
19/DEC/2006; 00 UTC
_ Total nu_mber. of obs =598

Upper Air
Wind Observations

We need wind profiles, especially for the tropics!!!

ECMWF



Forecast Impact Using Actual Aircraft Lidar Winds in

ECMWF Global Model (Weissmann & CardinaliI 20072

» DWL measurements reduced the 72-hour forecast error by ~3.5%

» This amount is ~10% of that realized at the oper. NWP centers worldwide in the past 10
years from all the improvements in modelling, observing systems, and computing power

»Total information content of the lidar winds was 3 times higher than for dropsondes

Diff in RMS of fc-Error: RMS(fc_en5t - an_eiz3) - RMS(fc_eiz3 - an_eiz3)
Lev=500, Par=z, fcDate=20031115-20031128 00/12 UTC, Step=96
NH=-4.14 SH= 6.82 Trop= 0.05 Eur=-14.54 NAmer= -6.13 NAtl= 2.84 NPac=-7.9

60°N

Green denotes
a positive impact

Mean (29 cases) 96 h 500 hPa height forecast error difference (Lidar Exper minus Control Exper) for 15 - 28 November
2003 with actual airborne DWL data. The green shading means a reduction in the error with the Lidar data compared to

the Control. The forecast impact test was performed with the ECMWF global model.



Summary

NASA’s contribution to NWP has been huge!

We need to improve data, models and data
assimilation

The most obvious missing obs are wind profiles

Ensemble Kalman Filter is a very promising,
efficient and simple approach that is already
better than 3D-Var and competitive with 4D-
Var.



