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Abstract

The BRDF/Albedo algorithm combines registered, multidate, multiband surface re
ectance

data from the EOS MODIS and MISR instruments to �t a Bidirectional Re
ectance Distribution

Function (BRDF) in seven spectral bands at 1-km resolution on a 16-day cycle. Then from this

BRDF, the algorithm derives two albedo-like measures for each spectral band as well as for three

broad bands covering the solar spectrum.

The BRDF of a surface describes the scattering of incident light from one direction in the

hemisphere into another direction in the hemisphere. Because this function varies, the radiance

of a surface changes with illumination and view position. In the BRDF/Albedo product, the

BRDF is characterized by semiempirical trigonometric functions that describe the angular shape

of the scattering function (the Ambrals BRDF model) based on simpli�cations of more complex

physical models.

Obtaining the surface BRDF is useful because it (1) allows the \correction" of re
ectance for

BRDF e�ects, for example by standardizing the view angle in multidate images; (2) is required

for accurate retrieval of surface re
ectance in the presence of an atmosphere; (3) quanti�es

the directional information in the remotely- sensed signal, which is related to surface structure

and scattering behavior and therefore ground cover type; and (4) provides a surface radiation-

scattering model for boundary layer parameterization of surface-atmosphere radiation transfer

for use in regional and global climate modeling.

The albedo of a surface is a dimensionless ratio of the radiant energy scattered away by

a surface to that received, regardless of direction. It is often restricted to a particular wave-

band or wavelength, in which case it is a spectral albedo. The spectral albedo of a surface

depends on both the BRDF of the surface and the scattering behavior of the atmosphere above

it. The MODIS/MISR BRDF/Albedo product provides two albedo measures: a \black-sky"

albedo (directional{hemispherical re
ectance) that integrates the BRDF over the exitance hemi-

sphere for a single irradiance direction, and a \white-sky" albedo (bihemispherical re
ectance)

that integrates the BRDF over all viewing and irradiance directions. Because these albedo mea-

sures are purely properties of the surface, and do not depend on the state of the atmosphere,

they can be used with any atmospheric speci�cation to provide true surface albedo as an input

to regional and global climate models. Albedo is a fundamental parameter for climate modeling,

since it is a property that drives much of the energy 
ux at the land boundary layer. Maps

of land surface albedo, which can be provided at �ne to coarse scales using the BRDF/Albedo

Product, will be extremely useful to global and regional climate modelers.
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MODIS BRDF/Albedo Product:

Algorithm Theoretical Basis Document
Version 4.0 { MOD43

1 INTRODUCTION

1.1 ALGORITHM AND DATA PRODUCT IDENTIFICATION

At-Launch:

� MOD43, Surface Re
ectance; Parameter 3669, Bidirectional Re
ectance

� MOD43, Surface Re
ectance; Parameter 4332, Albedo

Post-Launch:

� MOD43, Surface Re
ectance, Parameter 3665, Bidirectional Re
ectance, with Topographic Correction

� MOD43, Surface Re
ectance, Parameter 4333, Albedo, with Topographic Correction

1.2 INTRODUCTION

The earth's surface scatters radiation anisotropically in many wavelength regimes. The Bidirectional Re-


ectance Distribution Function (BRDF) speci�es the behavior of surface scattering as a function of illumina-

tion and view angles at a particular wavelength. The albedo of a surface describes the ratio of radiant energy

scattered upward and away from the surface in all directions to the downwelling irradiance incident upon the

surface. Like the BRDF, albedo is spectrally dependent. If the BRDF is known, the albedo can be derived

given knowledge of the atmospheric state. Note that the albedo is often integrated over all wavelengths of

the downwelling solar spectrum for applications involving surface energy balance, and the general use of

the term \albedo" implies this integration. However, in this document the term will also include spectral

albedo, depending on the context.

The anisotropic re
ectance behavior of earth surfaces presents an important problem for the interpreta-

tion of remotely-sensed images. Because of this behavior, a re
ectance value observed from a single angular

position cannot simply be multiplied by a constant to provide an albedo. Furthermore, since radiance mea-

surements of the same surface cover will vary with viewing position, incorrect scene inference can occur

when the same cover type is viewed under di�erent geometries or at di�erent times of day or season. On

the other hand, the anisotropic re
ectance provides an opportunity to infer information about the physical

parameters of the surface cover that produce the anisotropic e�ect. Such inference will obviously require a
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suite of re
ectance measurements obtained from di�erent viewing positions, rather than merely relying on

data from a single image.

The angular re
ectance of the land surface changes not only with viewing position, but also with the

position of the source of irradiance in the hemisphere. Thus, both the radiance in a speci�c direction and

the albedo of a surface are dependent on the sun's position in the sky. The angular pattern of downwelling

di�use radiance, which depends largely on the state of the atmosphere, will also in
uence both the albedo

and the speci�c surface radiance observed in a given direction. This means that the atmospheric state (e.g.,

turbidity) must be taken into account when BRDFs and the surface albedo measures derived from them are

extracted from a series of directional observations.

The purpose of the BRDF/Albedo product is (1) to describe the anisotropic re
ectance of the earth's

surface at a �ne spatial and temporal scale by �tting models of bidirectional re
ectance distribution to

angular observations, and (2) to provide two surface albedo measures (\black-sky" and \white-sky" albedos)

that allow quanti�cation, also at �ne spatial and temporal scales, of the balance in upwelling and downwelling

surface energy 
uxes. The BRDF functions and albedo measures are provided for seven spectral bands

spaced throughout the solar shortwave spectrum (0.4{3.0 �m), and in the case of albedo measures, for

three additional, broad bands (0.4{0.7, 0.7{3.0, 0.4{3.0 �m). All outputs are surface descriptors that are

independent of atmospheric characteristics. The BRDF/Albedo output product is described more completely

in the following section.

Obtaining the surface BRDF is useful because it (1) allows the \correction" of re
ectance for BRDF

e�ects, for example by standardizing the view angle in multidate images; (2) is required for accurate retrieval

of surface re
ectance in the presence of an atmosphere; (3) quanti�es the directional information in the

remotely-sensed signal, which is related to surface structure and scattering behavior and therefore ground

cover type; and (4) provides a surface-radiation scattering model for boundary layer parameterization of

surface vegetation atmospheric transfer schemes for use in regional and global climate modeling.

Albedo is a fundamental parameter for global climate modeling, since it is a function that drives much

of the energy 
ux at the land boundary layer. Black- and white-sky albedos, as pure surface properties,

can be used with any atmospheric speci�cation to provide true surface albedo as an input to regional and

global climate models. Fine-grained global maps of land surface albedo will be extremely useful to regional

climate modelers, and, given the way that our algorithm speci�es BRDF and albedo, such maps can be

easily collapsed to the coarser resolutions that global climate models can ingest directly.

1.3 DATA PRODUCT DESCRIPTION

The BRDF/Albedo algorithm combines registered, multidate, multiband surface re
ectance data from the

EOS MODIS and MISR instruments to �t two kernel-driven models of the Bidirectional Re
ectance Dis-

tribution Function (BRDF) in seven spectral bands at 1-km resolution on a 16-day cycle. Then from this

BRDF, the algorithm derives two albedo-like measures for each spectral band as well as for three broad
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bands covering the solar spectrum. The gridded data are inverted using the kernel-driven semiempirical

Ambrals (Algorithm for MODIS bidirectional re
ectance anisotropy of the land surface) BRDF model (us-

ing Ross-kernels, Li-kernels, and a specular kernel; see Wanner et al., 1995, 1997) and the empirical modi�ed

Walthall BRDF model (Walthall et al., 1995; Nilson and Kuusk, 1989), where the �rst consists of a weighted

sum of a volume-scattering (radiative transfer-based) kernel, a surface-scattering (geometric optics-based)

kernel, and a constant (isotropic contribution), the latter of a set of empirical kernels.

When su�cient and appropriate observations are available, the directional re
ectance pattern of the land

surface element associated with each 1-km grid cell can be described by the kernels of the Ambrals BRDF

model used and corresponding kernel weights (parameters) that best represent the scattering involved. Thus,

the kernels producing the lowest root-mean-square (RMS) error in inversion of the observations are chosen

to describe the BRDF and derive the bihemispherical integral (\white-sky" albedo) and the directional-

hemispherical integral (\black-sky" albedo) of the BRDF. In addition, results from the empirical modi�ed

Walthall model are stored to allow global comparisons based on a single consistent model. The product will

be generated for all seven MODIS land bands; broadband albedos (0.4{0.7, 0.7{3.0, 0.4{3.0 �m) will also be

provided. The product will be derived over land only. Table 1 gives an overview of product contents.

Users of this product will be found among the global climate change community, most notably radiation

budget investigators, and among regional and mesoscale modelers. Further users include other AM-platform

teams, for example the MODIS atmospheric correction team or the CERES team, who will use surface

BRDF in cloud detection. The product will also be used in land cover classi�cation for the MODIS Land

Cover Product.

1.4 DOCUMENT SCOPE

In the remainder of this document, overview and background information will be provided �rst; this includes

the intended use of the BRDF products, and the history of the BRDF models. A detailed description of the

algorithm follows in Section 3. It is presented from both a theoretical and practical viewpoint and consists

of physical descriptions, mathematical formulations, uncertainty estimates, and discussions of various issues

arising in the actual numerical implementations. A brief discussion of the assumptions used in this algorithm

and various constraints is given in the �nal section.

Note that the development of the BRDF/Albedo algorithm is ongoing, and it will continue to be revised

and re�ned in both pre- and postlaunch phases. This document provides a snapshot of the algorithm valid

at the time of preparation of the document. Subsequent revisions will document the ongoing evolution of

the algorithm and supporting studies.
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Table 1: Outline of Contents of the MODIS BRDF/Albedo Product (Status: Version 1, 1996).

Param. Name Data Type Dimensions Comments

BRDF Model uint8 1: data rows Identi�es Ambrals BRDF model

Identi�er 2: data columns kernel combination and

3: number of output models (2) secondary global model used

BRDF Model int16 1: data rows BRDF model parameters will

Parameter 2: data columns allow reconstructing BRDF

3: number of output models (2) shape, white-sky albedo, and

4: number of land bands (7) black-sky albedo at any solar

5: number of model parameters (4) zenith angle

Albedo int16 1: data rows Albedo type 1 is white-sky albedo,

2: data columns albedo type 2 black-sky albedo

3: number of output models (2) at the mean sun angle of observation;

4: number of land bands + 3 (10) 3 extra bands contain broadband albedos

5: albedo type (2) for 0.4{0.7, 0.7{3.0 and 0.4{3.0 �m.

Quality Control uint8 1: data rows Flag information on overall quality

Flags 2: data columns (3 bits), data base of inversion

3: number of QC words (4) (5 bits), solar and viewing angle range

available (7 bits), extra QC data (7 bits)

Inversion uint16 1: data rows Lists: RMSE for the Ambrals model,

Information 2: data columns RMSE of the secondary uniform model,

3: number of words (6) sensitivity parameter, scattering type

indicator, BRDF type indicator, TBD;

the latter to be used for inferences.
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2 OVERVIEW AND BACKGROUND INFORMATION

2.1 INTRODUCTION

The BRDF of a surface describes the scattering of incident light from one direction in the hemisphere into

another direction in the hemisphere. It will generally vary as a function of wavelength. That is,

fr(�i; �i; �v; �v; �) =
dLv(�i; �i; �v; �v;Ei; �)

dE(�i; �i; �)
; (1)

where fr(�i; �i; �v; �v; �) in units of sr�1 is the BRDF in waveband �; �i; �i; �v; �v are zenith and azimuth

angles of the direction of irradiance and viewing, respectively; E(�i; �i; �) is the parallel-beam irradiance from

the illumination direction in waveband �; and Lv(�i; �i; �v; �v;Ei; �) is the radiance in the view direction in

waveband � under the conditions of illumination (Nicodemus et al., 1977).

In this document, we will de�ne the BRDF as � = � fr , so that the BRDF is directly comparable

with the bidirectional surface re
ectance values and hemispherical-directional re
ectance factors that the

BRDF/Albedo algorithm receives as inputs from other MODIS and MISR products. We will further use

the notation � to refer to true, parametric values of the BRDF; R to refer to modeled values of �; and

�0 to refer to observations of BRDF, normally obtained from top-of-atmosphere radiances as corrected for

atmospheric e�ects and surface BRDF. We will also assume the BRDF to be symmetric with respect to the

principal plane of the illumination direction, and thus expressed as a function of �i; �v; �, where � is the

relative azimuth between illumination and view directions, i.e. � = j�v � �ij,
The BRDFs of land covers are known to show peaks in the function in the backward{scattering direction

of the principal plane, due to shadow hiding (e.g., Li and Strahler, 1986). This position in the viewing

hemisphere is known as the hotspot (Gerstl and Zardecki, 1985a, b), and its shape is characteristic of the

shape and density of surface projections (e.g., plant crowns) or scattering elements (e.g., leaves) of the

cover type (Jupp and Strahler, 1993). For some covers, notably water or wetlands, there will also be a

forward-scattering specular peak in the function.

The spectral albedo of a surface is a dimensionless ratio of the radiant energy scattered away from the

surface to that received by the surface at a particular waveband. That is,

�(�) =
E"(�)

E#(�)
=

R
2�
0

R �=2
0

L"(�v; �v; �) sin�v cos �v d�v d�vR
2�
0

R �=2
0

L#(�i; �i; �) sin�i cos �i d�i d�i
; (2)

where �(�) is the spectral albedo in waveband �; E"(�) is the upwelling radiant energy 
ux from the surface

in waveband �; E#(�) is the downwelling radiant energy 
ux in waveband �; L"(�v; �v; �) is the upwelling

radiance in direction �v ; �v in waveband �; and L#(�i; �i; �) is the downwelling radiance in direction �i; �i in

waveband �. Note that the downwelling energy 
ux includes both the solar beam and the di�use irradiance

that is scattered downward by the atmosphere. Albedo is normally measured by paired instruments with

hemispherical �elds of view that integrate upwelling and downwelling radiance.

Because upwelling radiance depends on both the angular distribution of downwelling irradiance as well

as the surface BRDF, surface albedo is dependent on the atmospheric state. It can change within minutes
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as clouds come and go, or within hours as an air mass with di�erent optical properties invades the region.

Albedo will further change over the course of the day with the sun's path in the sky, even for constant

atmospheric and surface conditions.

Rather than depending in this way on the state of the atmosphere, the albedo measures provided by

the MODIS/MISR BRDF/Albedo product are purely properties of the surface. Two measures are provided.

The �rst is directional{hemispherical re
ectance �b, a measure that integrates the BRDF over the exitance

hemisphere for a single irradiance direction, which is normally the position of the sun in the sky at a time

of interest. That is,

�b(�i; �) =
2

�

Z �

0

Z �=2

0

�(�i; �v; �; �) sin�v cos �v d�v d�; (3)

where �(�i; �v; �; �) is the BRDF in waveband �. Because the measure is not integrated over the sky

hemisphere for illumination directions, we refer to it as the \black-sky" albedo.

The second albedo measure is bihemispherical re
ectance �w, which is the double integral in waveband

� of the BRDF over all viewing and irradiance positions. That is,

�w(�) = 2
Z �=2

0

�b(�i; �) sin �i cos �i d�i: (4)

Since this integral weights all irradiance positions equally, it provides the albedo under conditions of perfectly

di�use illumination. Thus, we term it the \white-sky" albedo. Black-sky and white-sky albedos are provided

for each of the MODIS land bands as well as three broad bands covering the wavelength intervals 0.4{0.7 �m,

0.7{3.0 �m, and 0.4{3.0 �m. Broadband values are obtained by combining narrow-band measurements

weighted by standardized solar spectral irradiance functions.

2.2 MODELING OVERVIEW

In modeling the BRDF of a surface, two contrasting approaches are possible | physical and empirical. In

the empirical approach, a function (e.g., a set of spherical harmonics) is �tted that describes the shape of the

BRDF based on the observations at hand. That is, the BRDF is modeled as an empirical function of viewing

and illumination angles and azimuths in the hemisphere. For accurate �tting, this approach requires many

observations at numerous combinations of viewing and illumination positions. Although simple and direct,

the method is not very practical for remote-sensing applications because the number of angular observations

of a surface typically acquired by a single remote sensing instrument will usually be small. Furthermore, the

coe�cients that �t empirical models cannot be readily interpreted in terms of scene or surface properties.

Instead, relationships must be obtained by further empirical studies, such as through correlation analyses.

In the physical approach, a scattering model is constructed that explains anisotropic surface scattering

using physical principles. By inversion, re
ectance observations are used to infer the physical parameters

that drive the model. Once these are known, the BRDF may be determined for any view or illumination

position without recourse to further measurements. Moreover, the parameters typically have physical inter-

pretations in their own right that are of intrinsic interest beyond simply generating the BRDF. Note that
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these parameters may vary among di�erent physical models. A disadvantage of the physical approach is

that a large number of parameters (perhaps 6 to 12) may be required to drive the model. Further, numerical

inversion is normally required, which is computationally very intensive and not always robust.

A third approach, which we may term \semiempirical," combines physical and empirical approaches.

Here, the BRDF is modeled as a weighted sum of a few (typically two or three) trigonometric functions of

view zenith, illumination zenith, and relative azimuth angles that describe the shape of the BRDF. However,

these functions are derived from physical approximations, and so have some physical meaning. The weight

given to each function is determined empirically by �t to the observations. Thus, it is the weights of

the physically-based functions that are retrieved, not a set of physical parameters governing the surface

scattering.

The MODIS/MISR BRDF/Albedo product utilizes this hybrid approach, �tting a suite of semiempirical

models to each set of angular observations. Each model typically consists of three components: a volume-

scattering function, a geometric surface-scattering function, and a constant ( i.e., an isotropically-scattering

function). The functions are referred to as \kernels" | hence, the corresponding semiempirical models may

be called \kernel-driven." For the current work we employ two choices of volume-scattering kernels and

two choices of geometric surface-scattering kernels developed for this project. We also exercise the modi�ed

Walthall model (Walthall et al., 1985; Nilson and Kuusk, 1989) which supplies a purely empirical �t for each

pixel on the globe. Although this model rarely provides the best �t, it is a simple and consistent expression

and has been widely applied. (Further details are provided in Section 3.1) Semiempirical models also have

the advantage of being very rapidly invertible, due to their linear nature. Furthermore, albedo calculations

are greatly simpli�ed since the kernels need to be integrated only once, before operational processing begins.

Section 2.5 summarizes the historical development of physical, empirical, and semiempirical models in the

literature.

In the �tting of surface BRDF models using top-of-atmosphere observations, a problem arises from the

interaction between the anisotropic surface scattering and atmospheric scattering. In general, the e�ect of

atmospheric scattering on surface BRDF retrieval will tend to damp the BRDF, making it appear more

isotropic. Surface re
ectance, when retrieved assuming an isotropic surface, will be underestimated in the

bright parts of the BRDF and overestimated in the dark parts. Thus, surface BRDF is required to esti-

mate bidirectional surface re
ectance accurately, while BRDF �tting requires accurate surface bidirectional

re
ectances. In other words, some form of surface-atmosphere coupling is needed. To provide this coupling

in deriving the BRDF/Albedo Product, atmospheric parameters are archived with each surface re
ectance

measurement, and a looping iteration is carried out in which (1) a surface BRDF is �tted to initial estimates

of surface re
ectances; (2) surface re
ectances are rederived using this BRDF and the atmospheric parame-

ters associated with each initial re
ectance; and (3) a new and �nal BRDF is then �tted. More details are

provided in Section 3.2.4.
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2.3 EOS CONTEXT

The algorithm we describe in this document is targeted speci�cally to the remote sensing scenario presented

by the EOS-AM and -PM platforms, which will place three instruments in polar orbits that can be used

for BRDF/Albedo retrieval. Two of these will be MODIS instruments. A MODIS will orbit on each of

the AM and PM platforms, with nominal equatorial crossing times of 10:30 and 13:30, respectively. By

virtue of its wide scan (�55�), MODIS images the earth on a two-day repeat cycle, with a one-day or

more frequent repeat at higher latitudes greater than 30� due to orbital convergence. Thus, the same point

on the ground will be potentially visible to MODIS from a number of di�erent illumination and viewing

positions in the hemisphere during the span of a few days. The third instrument, MISR (Multiangle Imaging

SpectroRadiometer), will 
y on the EOS-AM platform. MISR has a unique design that allows it to image the

same point on the ground from nine along-track angles (Diner et al., 1989). However, its across-track �eld

of view is more restricted than that of MODIS, providing a 9-day one-look repeat cycle for global coverage

as well as a 16-day two-look cycle. Relevant characteristics of the MODIS and MISR instruments for the

inference of BRDF and albedo measures are discussed more fully in Section 2.6.

For calibration and validation of the BRDF/Albedo product in the post-launch time frame, CERES data

will also prove useful. This instrument measures top-of-atmosphere and surface radiation 
ux in short- and

longwave regions. It has a much larger �eld of view than either MODIS or MISR | 21 km at nadir | so

that albedo can be validated only for broad regions. However, CERES will be very helpful in developing and

maintaining the narrow-to-broadband spectral calibration that we will use to generalize short- and longwave

albedos from MODIS and MISR sensors. Geostationary data from the GOES-NEXT and METEOSAT series

of instruments may also prove useful for validating BRDF, in that multiangle measurements of radiance from

a single point are acquired in the course of a single day. Postlaunch validation is discussed more fully in

Section 3.3.4.3.

Another satellite instrument that will prove useful is POLDER (Polarization and Directionality of the

Earth's Re
ectances), a push{broom, wide{�eld, multiband imaging radiometer/polarimeter. Relying on

an area detector array and a rotating �lter wheel, POLDER is much like a framing camera that acquires

overlapping images along the satellite ground track. Data are acquired in eight bands, of which three are

designed for land imaging, centered at 443, 665, and 865 nm. The ADEOS satellite on which POLDER

is mounted was successfully launched at 10.53 a.m. (JST) / 01:53 a.m. (UT) on August 17, 1996 from

the Tanegashima Space Centre in Japan. ADEOS orbits the Earth in a height of about 800 km with an

inclination of 98.6� in 100.8 minutes; it has a 10:41 a.m. local time descending node and a recurrence cycle

of 41 days.

The initial check-out for POLDER was performed on September 16th and 26th, 1996 and indicated that

POLDER was functioning normally. As a result, POLDER began routine observation of the Earth at the

beginning of October 1996. Although the ground resolution cell size of 7km by 6km is considerably coarser

than those of MODIS and MISR, POLDER data will be invaluable in testing the BRDF/Albedo algorithm.
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Of our BRDF/Albedo team, two researchers are also members of the POLDER Science Team: M. J. Barnsley

and X. Li. Acquisition of POLDER data in direct support of our MODIS e�ort is an objective of both of

their work plans, and thus POLDER data will be available for the validation of the BRDF/Albedo algorithm

shortly after launch (See Section 3.3.4).

2.4 EXPERIMENTAL OBJECTIVE

There are several applications envisioned for the BRDF products. First is an internal application in the

MODIS Surface Re
ectance Product. Accurate retrieval of Level 2 surface re
ectance (MOD09, Parameter

2015) is dependent on knowledge of the surface BRDF. At launch, this parameter will initially assume an

isotropic lower bound in re
ectance retrieval, but will utilize the most recent BRDF as soon as possible in

the postlaunch period (Vermote et al., 1997).

The error in extracting surface re
ectance assuming an isotropic lower boundary is signi�cant, ranging

from 5{15 percent or beyond, depending on the waveband and atmospheric turbidity (see Section 3.2.4).

Secondly, BRDF products are useful to normalize image pixels with respect to variations in solar illumi-

nation directions and viewing direction. Pixel values from di�erent parts of a scan from wide �eld-of-view

remote sensors, such as MODIS, will vary signi�cantly depending on viewing position. For imagery obtained

on di�erent dates and/or at di�erent times, and even within di�erent parts of a single scan at high latitudes,

solar illumination angles will change. Thus, multitemporal images or even pixels in the same image are not

directly comparable without correction of angular e�ects. Detailed knowledge of surface BRDF, as well as

the state of the atmosphere, is a prerequisite for such corrections. Within the MODIS processing sequence,

the MODIS land cover product (MOD13) will utilize surface re
ectance data adjusted for BRDF e�ects.

Thirdly, the BRDF/Albedo product will be directly and immediately useful for global climatic model-

ing. Land surface albedo is a key parameter for climate and ecosystem studies because of its role in the

surface energy balance. More accurate and reliable estimates of earth surface albedo can only be obtained

through algorithms that utilize the BRDF. Furthermore, future global climate modeling will need to turn

to distributed-parameter BRDF databases for accurate modeling of surface{atmosphere boundary layer en-

ergy interactions. The semiempirical models and associated parameters of the BRDF product are directly

ingestible for climate modeling work. Note that at present, global climate models are typically exercised at

much coarser resolutions than 1-km. However, the linear semiempirical models used in the BRDF/Albedo

product can be aggregated simply and easily to coarser resolutions as desired.

Fourthly, because the semiempirical models have a physical basis in their included kernels, the inference

of physical parameters may be possible from the weights they receive in �tting to a particular ground

re
ectance pattern. For example, the weights of the volume scattering kernels include parameters of leaf

area index (LAI), leaf re
ectance{transmittance, and ground re
ectance. (See Section 3.1.2, Table 4.) With

some educated guesses about the leaf re
ectance-transmittance and ground re
ectance, the LAI is potentially

retrievable from the directional signal alone. Note also that a structural parameter like LAI remains constant
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across wavebands, providing an additional constraint that bridges the wavelength domain. Model selection

may also provide a mechanism for physical inference. For example, consistent selection of the Li-sparse

kernel for tall, prolate crowns could indicate sparse forest and provide for an inference of surface roughness.

These options will be explored in post-launch research phases.

Lastly, BRDF parameters may be displayed over large areas as a way of mapping surface attributes (see

Section 3.1.4.2 and Appendix J). Maps of kernel weights could be related to plant community composition

on the broad scale, as in shrubland-woodland-savanna-forest gradients. In this situation, the mapping of

these parameters would be analogous to the mapping of the Normalized Di�erence Vegetation Index (NDVI),

which is an empirical measure with a strong intrinsic physical meaning that has proven very useful for global

biophysical studies. Moreover, human activity is one of the primary in
uences a�ecting surface albedo. In

fact, land-surface spectral albedo is one of the strongest signals of change to the land surface caused by

human activity. Global albedo maps thus could be important inputs to global studies of human impact on

the environment.

2.5 HISTORICAL PERSPECTIVE

The development of models describing bidirectional surface re
ectance has been an active �eld within remote

sensing in recent years. Physically-based BRDF models include radiative-transfer models, geometric-optical

models, hybrid models and computer-simulation models (Goel, 1987, 1989; Strahler, 1994). Radiative

transfer models normally treat the terrestrial surface as a plane-parallel layer in which soil or canopy elements

are assumed to be small absorbing and scattering particles. Radiative transfer theory is then used to account

for the angular characteristics of the radiation �eld. Geometric-optical models typically assume that the

scattering surface consists of a set of geometric objects or protrusions of prescribed shapes and dimensions

(cylinders, cones, spheres, spheroids, etc.) placed on the ground in a de�ned manner. They are driven by

shadowing e�ects, which are a function of both the surface and the positions of viewing and illumination in

the hemisphere. Hybrid models combine elements of both geometric-optical and radiative transfer models.

These may range from the simple (Verstraete et al., 1990; Iaquinta and Pinty, 1994) to the complex (Li et al.,

1994). Computer-simulation models predict radiation �eld characteristics by simulating photon trajectories

and histories. Typically, these make use of Monte Carlo ray-tracing or radiosity techniques (Goel and

Rozehnal, 1992; Borel et al., 1991;. Lewis and Muller, 1992; Boissard et al., 1996). For more thorough

reviews of BRDF models, see Goel (1987) or Myneni et al. (1990). Note that the physical models developed

thus far are each speci�c to a limited range of land surface types (e.g., soil, sparse or dense vegetation,

complex terrain). There is no universal physical model for all surface types. Empirical models are less well

developed. The Walthall model (Walthall et al., 1985) as modi�ed by Nilson and Kuusk (1989) has been

applied fairly widely. It is a four-parameter, second-order polynomial of view zenith, illumination zenith

and relative azimuth. In shape, it lacks a hotspot. Barnsley and Muller (1991) �tted spherical harmonics to

directional re
ectances, and noted that the most important harmonics also appear in the Walthall model.
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Semiempirical models are a recent development. The model of Roujean et al. (1992) provided the pattern

for the semiempirical models used in the BRDF/Albedo algorithm | weighted sum of a volume-scattering

kernel and a surface-scattering kernel, with a constant (see Section 3.1.2). It was successfully exercised in

an AVHRR application (Leroy and Roujean, 1994) as a way of removing BRDF e�ects from NDVI. Wu, Li

and Cihlar of the Canada Centre for Remote Sensing have also applied the Roujean model successfully to

describe the anisotropy of top-of-the-atmosphere radiances in an AVHRR application (1995). However, the

Roujean model does not �t all surface BRDFs well. The complex shadowing of a forest, for example, causes

di�culties (Roujean et al., 1992).

A semiempirical model of a di�erent type was recently provided by Rahman et al. (1993a,b). This

model calculates surface re
ectance as a product of three functions: a modi�ed Minnaert function (1941); a

one-parameter Henyey-Greenstein function (1941); and a hotspot function based on the model of Pinty et al.

(1990). Three parameters are used to drive the functions. Although none of the functions are derived directly

from physical theory, they are known to �t directional scattering well in a number of real applications. In

a form modi�ed by Martonchik (Engelsen et al., 1996) this model is being used to generate the BRDF for

the MISR Surface Product(Diner et al., 1996; Martonchik, 1997).

The semiempirical Ambrals model that we apply here (see Section 3.1.1) overcome the limitations of these

predecessors. The Li-kernels are used for geometric surface scattering and therefore the complex shadowing

of forest canopies are �t well. The Ross-kernels are used to �t the volume scattering cases. Furthermore,

our combination of models are easily invertible by inversion of 3-by-3 or 4-by-4 matrices.

2.6 INSTRUMENT CHARACTERISTICS OF MODIS AND MISR

2.6.1 Spectral Characteristics

MODIS will provide comprehensive and frequent global earth imaging in 36 spectral wavebands and at

several di�erent spatial resolutions (nominally 250 m, 500 m and 1 km, dependent on the waveband). The

swath width of MODIS is 2300 km, subtending an angle of 110� across-track �eld-of-view (i.e. �55�, or
about �61� at the surface). Consequently, it will be capable of acquiring multiangle measurements of angular
re
ectance for a �xed �eld site by virtue of overlap between images obtained on separate orbital overpasses.

MISR is the only EOS instrument designed to provide multiangle, continuous coverage of the earth with

high spatial resolution. It uses nine separate charged-coupled device (CCD) pushbroom cameras to observe

the earth at nine discrete view angles in four spectral bands. Note that MISR images along-track, while

MODIS images in the cross-track direction. The approach in the BRDF/Albedo algorithm is to combine

the views of these two instruments during a �xed time period to provide the best product.

Nominal spectral characteristics of the two instruments are shown in the Table 2 below. Both instruments

utilize narrow bandwidths, ranging from 15{35 nm for MISR and 10{50 nm for MODIS. For MODIS, only

bands 1{7 (land bands) are shown. Note that MODIS bands 4 and 2 substantially overlap MISR bands 2 and

4, respectively; for the purposes of the BRDF/Albedo product, we will regard these band pairs as identical.
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Table 2: MODIS and MISR spectral bands (nominal), arranged by wavelength, in nm (Band numbers shown

in parentheses).

Instrument Spectral Band

MODIS (3) (4) (1) (2) (5) (6) (7)

459{479 545{565 620{670 841{876 1230{1250 1628{1652 2105{2155

MISR (1) (2) (3) (4)

423{458 543{558 663{678 853{878

MODIS band 1 and MISR band 3 overlap less substantially, but we will also consider them equivalent.

MODIS band 3 and MISR band 1 are more problematic. They are 20 and 35 nm wide respectively, are

separated by 1 nm, and span a range of 56 nm. In this wavelength range, the vegetation spectrum is fairly


at (Deering, 1989); however, mineral soil spectra show a slow increase across the region. This could provide

a source of error when, by chance, signi�cantly more measurements were available from one instrument than

the other. Quantitative estimates of the spectral re
ectance of typical vegetation-soil mixtures within these

two nearby bands will be the topic of further study. However, until such studies are completed, we will

regard the two bands as spectrally identical.

A further consideration is that MISR data are not available for wavelengths longer than near-infrared.

Thus, BRDF/Albedo inference in MODIS bands 5{7 will of necessity be based only on MODIS measure-

ments. However, the BRDF/Albedo algorithm performs model selection based on the goodness-of-�t of

measurements to Bands 1{4 only. This means that the BRDF is constrained in Bands 5{7 to follow the gen-

eral shape of the BRDF that best �ts Bands 1{4. Since the models identify physical scattering mechanisms

that are largely dependent on surface structural characteristics, which are in turn largely independent of

wavelength, we do not anticipate overly large errors in �tting BRDF and albedo measures in these wavebands

(see also Section 3.2.1.4).

2.6.2 Directional Sampling

Taken together, MISR and MODIS have the potential to sample the viewing hemisphere at any location

quite well. MISR's nine cameras image with an operational swath width of 364 km, providing a repeat cycle

of nine days at the equator, converging to two days near the poles. Due to the nature of the EOS-AM

platform orbit, the global repeat time for double MISR coverage is 16 days. In contrast, the MODIS ground

swath of 2300 km provides a two-day global repeat cycle, with a one-day cycle beginning at latitudes greater

than about 30�.

Angular imaging characteristics of MISR are provided in Table 3. Cameras are lettered A to D in order

of increasing focal length and view zenith angle, and further distinguished by the notation \n" for nadir,

\a" for aft-pointing, and \f" for forward-pointing.
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Table 3: Characteristics of MISR directional imaging.

MISR Camera

Instrument characteristic An Af, Aa Bf, Ba Cf, Ca Df, Da

Platform view angle �0.0� �23.3� �40.0� �51.2� �58.0�
Earth view angle �0.0� �26.1� �45.6� �60.0� �70.5�
Crosstrack IFOV and sample spacing 250 m 275 m 275 m 275 m 275 m

Downtrack sample spacing 275 m 275 m 275 m 275 m 275 m

Downtrack IFOV length 214 m � � � 707 m

Footprint area ratio to Af/Aa cameras � 1.00 1.06 1.11 1.17

in 1.1-km resolution mode

�: Data not available

For the production frequency of the BRDF/Albedo product, we have chosen the MISR two-look cycle

repeat time of 16 days. During the sixteen days, the maximum number of looks possible with both MODIS

and MISR on the AM platform will range from 31 at the equator to about 65 at 60� latitude (using equinox

values), and even increasing beyond. Figure 1 provides plots showing the angular coverage of MODIS and

MISR at a range of latitudes during a 16-day period centered around the equinox. By and large, the viewing

hemisphere is sampled in two directions that are roughly orthogonal, corresponding to across-track sampling

by MODIS and along-track sampling by MISR. These sampling axes rotate with latitude. Note also that

orbital convergence with increasing latitude increases the sampling frequency and the range of solar zenith

and relative azimuth angles for which data are acquired.

Both the hotspot peak, which can occur in the backward-scattering direction of the BRDF, and the

specular peak, which can occur in the forward scattering direction, lie in the principal plane of the sun

(shown in Figure 1 as the 0�{180� axis). The EOS-AM platform's sun-synchronous orbit constrains the

relative azimuth of MODIS and MISR observations as a function of latitude, and it is not possible to sample

close to the principal plane at all locations. Good principal-plane coverage will be obtained by MISR in

southern latitudes in the range of 40�{60�. Beyond these latitudes, rotation of the along-track sensing plane

with respect to the sun moves the sensing plane as much as 30� away from the principal plane. Note that

although these conditions are not ideal for sensing forward- and backward-scattering peaks, the physically-

derived kernels of the semiempirical Ambrals model constrain BRDF shapes to include these features. Thus,

the BRDF/Albedo algorithm tends to mitigate this problem. Consider also that atmospheric scattering

typically contributes signi�cantly to top-of-atmosphere forward- and backward-scattering peaks (Gerstl and

Zardecki, 1985a, 1985b), making derivation of surface re
ectance at these geometries problematic. The

sensitivity of BRDF �tting and albedo extraction as in
uenced by sampling constraints is described in more

detail in Section 3.3.2.1.

Cloud cover will also restrict angular sampling for the BRDF/Albedo product during the 16-day com-
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Figure 1: Sampling of the viewing hemisphere by MODIS and MISR during a 16-day period. Seven latitudes

are shown for equinox conditions.
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positing period. Cloud cover is discussed further in Section 3.3.2.1 and Appendix B. The minimum number

of looks required for �tting a semiempirical model will depend on the exact distribution of view and azimuth

angles with respect to the principal plane, but can be taken roughly as 8. If a su�cient number of looks is

not available, information from supporting ancillary databases (previous BRDF/albedo product, land cover

type, and an ancillary global BRDF database that will be built as our knowledge grows) will be used to

limit or, if unavoidable, replace the inversion. Note that for some areas of the earth's land surface where

cloud cover is persistent, BRDF/Albedo retrieval may be infrequent.

2.6.3 Spatial Resolution

MODIS and MISR data have di�ering spatial resolutions. MISR provides a switchable resolution that

includes 275 m, 550 m, 1.1 km, and 2.2 km (250 m, 500 m, 1 km, 2 km for nadir camera), by combining

outputs of detectors in its linear arrays. However, since each of MISRs nine cameras image the ground

separately, their images must be registered after acquisition. Also, the individual bands acquired by each

camera require registration. Considering these factors, the MISR team plans to produce its global land

products at 1.1 km resolution in Space Oblique Mercator (SOM) projection. The resampling will also

include terrain relief correction for those areas with gentle slopes. Input to the BRDF/Albedo algorithm

will be Level 2 surface re
ectance values produced at 1.1 km on the SOM grid.

The spatial resolution of the MODIS land bands varies by band. Red and infrared bands (1 and 2) are

sensed at 250-m resolution, while the remaining �ve bands (3{7) are acquired at 500 meters. These spatial

resolutions are nominal values at nadir. At o�-nadir angles, the ground projection of the detector's �eld

of view increases by a factor of about 2 in the along-track direction and 5 in the across-track direction to

the scan limit of �55�. From the viewpoint of BRDF retrieval, the far o�-nadir looks are most useful even

though they are imaged at a larger e�ective pixel size. A further complicating factor is that the instrument's

across-track 10-pixel scanning swath width increases with angle so that successive scans overlap (the \bow-

tie e�ect"). In fact, each ground location will be imaged twice at the far edge of the scan, appearing in two

successive scans.

The change in footprint with scan angle for MODIS will have the e�ect of smoothing the �tted BRDF

spatially, inducing an amount of spatial autocorrelation in the product. However, the MISR footprint, by

virtue of the separate focal length of each camera, the readout rate, and averaging method used for 1.1 km

resolution, increases only by 17 percent from nadir to D-camera imaging at 70� earth view zenith angle (see

Table 3). Thus, relatively few of the actual MODIS and MISR observations assembled in a 16-day period

will su�er from excessive pixel size.

Because the BRDF/Albedo is obtained from a set of measurements accumulated over a 16-day period,

Level 2 MODIS/MISR data must be gridded to Level 2G (based on the ISSCP sinusoidal grid) and binned

together before the Level 3 BRDF/Albedo product can be made.
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3 ALGORITHM DESCRIPTION

3.1 THEORETICAL DESCRIPTION

Kernel-driven models for the bidirectional re
ectance distribution function of vegetated land surfaces at-

tempt to describe the BRDF as a linear superposition of a set of kernels that describe basic BRDF shapes,

with the coe�cients or weights chosen to adapt the sum of the kernels to the given case. Typically, semiem-

pirical kernels are based either on one of several possible approximations to a radiative transfer scenario

of light scattering in a horizontally homogeneous plant canopy (e.g., a crop canopy), or on one of several

approximations feasible in a geometric-optical model of light scattering from a surface covered with vertical

projections that cast shadows (e.g., a forest canopy). Deriving a kernel of this nature requires simplifying

and manipulating a physical model for the BRDF until it reaches the form

R = c
1
k + c

2
; (5)

in which k is a function only of view and illumination geometry, c
1
and c

2
are constants containing physical

parameters, and R is the modeled value of the true BRDF, �.

The following discussion presents each of the kernels used in the BRDF/Albedo algorithm. The algorithm

that was developed for MODIS BRDF/Albedo Product is now known as \Ambrals" (Algorithm for MODIS

bidirectional re
ectance anisotropies of the land surface), and the kernels applied jointly as the Ambrals

BRDF model. For more complete information on the theory and derivation of the kernels encompassed in

this algorithm, see Wanner et al. (1995, 1997).

3.1.1 Kernels

The Ross kernels are derived from a formula presented by Ross (1981) for the directional re
ectance above

a horizontally homogeneous plant canopy calculated from radiative transfer theory in a single scattering

approximation. The Ross-thick kernel was derived and described by Roujean et al. (1992). It is based on

an approximation for large LAI values:

kthick =
(�=2� �) cos � + sin �

cos �i + cos �v
� �

4
; (6)

c
1

=
4s

3�

�
1� e

�LAI B
�
; (7)

c
2

=
s

3
+ e

�LAI B

�
�s � s

3

�
: (8)

In the kernel, �i and �v are zenith angles for illumination and view, respectively; � is the relative azimuth of

illumination and view directions; and � is the phase angle of scattering, cos � = cos �i cos �v+sin �i sin �v cos�.

In the constants, s is leaf re
ectance (= leaf transmittance); �s is the (assumed isotropic) surface re
ectance

of the soil or understory; LAI is the leaf area index; and B is the average of secants of possible view and

illumination zenith angles. For this formulation, a spherical leaf angle distribution is assumed. The Ross-thin
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kernel simpli�es Ross's equation based on an approximation for small LAI values:

kthin =
(�=2� �) cos � + sin �

cos �i cos �v
� �

2
; (9)

c
1

=
2sLAI

3�
; (10)

c
2

=
sLAI

3
+ �s: (11)

Although this kernel applies primarily to the case of a thin canopy of scatterers over a uniform background,

it can also be appropriate for a very dense, uniform canopy of high leaf area, since in that case the leaf layers

below the uppermost can act like a uniform background (Strahler et al., 1995).

The Li kernels are derived from the modeling approach of Li and Strahler (1986, 1992). In this approach,

the surface is taken as covered by randomly-placed projections (e.g., tree crowns) that are taken to be

spheroidal in shape and centered randomly within a layer above the surface. The BRDF is modeled as a

function of the relative areas of sunlit and shaded, crown and background that are visible from the viewing

position in the hemisphere. For the Li-sparse kernel, it is assumed that shaded crown and shaded background

are black, and that sunlit crown and background are equally bright. Under these circumstances, and with

some further approximations in the way that view and illumination shadows overlap, the Li-sparse kernel is:

ksparse = O(�i; �v; �)� sec �0i � sec �0v +
1

2
(1 + cos �0) sec �0v; (12)

where

O =
1

�
(t � sin t cos t) (sec �0i + sec �0v); (13)

cos t =
h

b

q
D2 + (tan �0i tan �

0
v sin�)

2

sec �0i + sec �0v
; (14)

D =
q
tan2 �0i + tan2 �0v � 2 tan �0i tan �

0
v cos�; (15)

cos �0 = cos �0i cos �
0
v + sin �0i sin �

0
v cos�; (16)

�
0 = tan�1

�
b

r
tan �

�
; (17)

In these expressions, b is the vertical radius of the spheroid; h is the horizontal radius of the spheroid; and

is the height of the center of the spheroid. For this model, and

c
1

= C ��r
2

; (18)

c
2

= C: (19)

Here, C is the brightness of sunlit surface, and � is the count density of spheroids (number of spheroids

per unit area). The sun zenith angle dependence of C may be approximated as C= cos�i (Schaaf, Li and

Strahler, 1994).
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The Li-dense kernel di�ers from the Li-sparse kernel in that it accommodates mutual shadowing. It

assumes a random distribution of crown heights to maximize the geometric-optical e�ect in a dense ensemble

of canopies.

kdense =
(1 + cos �0) sec �0v

sec �0v + sec �0i � O(�0i; �
0
v)
� 2; (20)

c
1

=
C

2
(1� �); (21)

c
2

= C + (G� C)�: (22)

These kernels are not yet linear in that they still contain two parameters, namely the ratios and ,

describing crown shape and relative height. For the present, we �x each parameter using a spherical shape

close to the ground for the Li-sparse kernel (b=r = 1, h=b = 2) and a higher prolate shape for the Li-dense

kernel (b=r = 2:5, h=b = 2). The �xed parameters for the Li-sparse kernel are intended for sparser vegetation

covers exhibiting geometric-optical shadowing e�ects, such as shrublands or woodlands. It also �ts some

rough surfaces, such as plowed �elds. The Li-dense kernel is intended to capture the three-dimensional

mutual shadowing e�ects that occur in conifer forests and other vegetation covers with tall plant crowns.

As do most available BRDF models, all of these kernels assume that the BRDF depends only on the

relative azimuth between the solar and the viewing direction. This symmetry may not be realized in

some natural situations, for example for row e�ects or other preferential orientation of plants for ecological

reasons. However, at this point we think that introducing another degree of freedom into the modeling is not

warranted in view of the additional retrieval uncertainties this would introduce and our lack of knowledge

concerning the relative importance of such e�ects. In a post-launch periods extensions of the modeling to

non-symmetric BRDFs are possible.

In anticipation of situations in which forward scattering by water surfaces, as for example in rice paddies

or 
ood zones, produce some specular re
ection form water surface facets, we have provisionally added

a kernel based on the Cox-Munk model (1954) for sea-surface scattering. With some assumptions, the

Cox-Munk model can be made to �t the form R = c1k + c2 , in which the kernel kspec, is

kspec =
1

cos �i

 
1� tan2 �n

�2

!
� 1 if

tan2 �n
�2

� 1;

kspec = �1 else: (23)

In this expression, �2 is the slope variance, given as �2 = 0:003 + 0:00512w, with w as the wind speed, in

m/sec. The parameter �n is de�ned by

cos2 �n =
1

2

 
(cos �i + cos �v)2

1 + cos�

!
: (24)

The constants c
1
and c

2
for this model are

c
1
= c

2
=

�(0; �)

4��2
; (25)
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Figure 2: Kernel values (arbitrary units) on the principal and on the cross-principal planes for three di�erent

sun zenith angles.

where �(�; �) is the Fresnel re
ection coe�cient of water with � set to a constant 0., and � is the refractive

index between water and air. For the application of in the BRDF/Albedo product, we have selected w =

5m/sec, which provides a �xed value of �2 =0.0286.

This kernel is included in the algorithm on a provisional basis. Final acceptance will be based on a more

complete theoretical analysis and validation of the kernel by �t to forward-scattering observations.

Figure 2 provides plots of the kernel types given above for three sun angles as a function of view zenith

along the principal plane and cross{principal plane. The kernel shapes are clearly well{di�erentiated.

These particular kernels have been selected as the most likely to capture the wide range of land cover

anisotropy on a global basis. However, this scheme is 
exible enough that other kernels can be easily adopted

should any become available and should they be shown to be superior for a particular landtype.
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3.1.2 Kernel-Driven Models

A complete kernel-driven semiempirical model is formulated as a linear combination of kernels. Most suitably

it has the form

R = fiso + fgeokgeo + fvolkvol; (26)

which is derived from adding appropriate choices of geometric-optical surface-scattering and radiative-

transfer volume-scattering kernels, each multiplied by a proportion � or (1��) that weights the contribution
of each model. These proportions may be regarded as the areal proportions of land cover types exhibiting

each type of scattering (neglecting multiple scattering between the two components), or as mixing propor-

tions for land cover types that display both a volume{scattering and a geometric{optical contribution to the

BRDF. The quantities and are the respective kernels; the factors fgeo and fvol are their respective weights;

and the term fiso is the isotropic contribution. The formulae for fiso, fgeo, and fvol are shown in Table 4.

In the inversion and �tting of a semiempirical model to data, estimates of the weights f are retrieved from

bidirectional re
ectances and speci�cation of viewing and illumination positions. Although this objective

satis�es many of the goals of the BRDF/Albedo product, the existence of formulae for the weights f in terms

of physical parameters could provide for direct inference of physical parameters from the weight values �tted

(see Section 2.4). This possibility will be explored in the postlaunch phase as a research topic.

The kernel-driven semiempirical BRDF model using either the Ross-thin or the Ross-thick model for vol-

ume scattering and either the Li-sparse or the Li-dense kernel (using the crown height and shape parameters

given above) are known and will be referred to as the Ambrals BRDF model (Wanner et al., 1997).

3.1.3 The Modi�ed Walthall Model

Empirical models can be understood as being of the kernel-driven model type as well, where the kernels

are empirical functions. An example is the modi�ed Walthall model, derived by Walthall et al. (1985) and

improved by Nilson and Kuusk (1989). It has the form

R = p
0

�
�
2

i + �
2

v

�
+ p

1
�
2

i �
2

v + p
2
�i�v cos�+ p

3
: (27)

Note that this is the same form as the semiempirical models discussed above | it is comprised of a weighted

superposition of functions of angles, and the weights p are the parameters of the model. As a consequence,

models like the modi�ed Walthall model can be processed along with linear semiempirical models by the

same linear inversion scheme.

3.1.4 Advantages of Linear Models

Linear models have a number of advantages in the context of global data processing. Linearity in BRDF

models is comprehensively discussed by Lewis (1995) and demonstrated with the modi�ed Walthall model. A

�rst and foremost advantage is that any linear model can be inverted analytically through matrix inversion for

the system of equations obtained by setting the derivative of the error function to zero (see Section 3.2.1).
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Table 4: Semiempirical weight formulas

Model Weight Formulae

Ross-thin plus Li-sparse: fiso = �C + (1� �)
�
sLAI
3

+ �s

�
,

fgeo = �C ��r2,

fvol = (1� �) 2sLAI
3�

.

Ross-thick plus Li-sparse: fiso = �C + (1� �)
�
s
3
+ e�LAI B

�
�
0
� s

3

��
,

fgeo = �C ��r2,

fvol = (1� �) 4s
3�

�
1� e�LAI B

�
.

Ross-thin plus Li-dense: fiso = �C + (1� �)
�
sLAI
3

+ �s

�
,

fgeo = �
C
2
,

fvol = (1� �) 2sLAI
3�

.

Ross-thick plus Li-dense: fiso = �C + (1� �)
�
s
3
+ e�LAI B

�
�
0
� s

3

��
,

fgeo = �
C
2
,

fvol = (1� �) 4s
3�

�
1� e�LAI B

�
.

This provides direct estimates of the parameters fiso, fgeo, fvol and while avoiding numerical inversion

problems.

Second, both the directional-hemispherical and bihemispherical integrals of the BRDF (black-sky and

white-sky albedos) may be precalculated for each kernel individually. The albedo of a model then is simply

the sum of the kernel albedos, weighted by f values. By using a look-up table, numerical integration of the

models can thus be avoided.

Third, linear BRDF models scale linearly in space if adjacency e�ects are assumed to be small. This

allows for mixed pixel cases, as indicated by the areal proportion parameter in the model factors listed above.

This feature also allows for the scaling of BRDF and albedo from one spatial resolution up to a coarser one,

e.g., to a particular resolution needed for a climate model. Finally, since some of the parameters driving the

models are dependent on wavelength while others are not (e.g., structural parameters), it may be possible

to extract all or some of them from multiband analysis, making assumptions about the others.

3.1.5 Validation of Semiempirical Models

3.1.5.1 Fit of Semiempirical Models to Ground Data

Note: A full detailed report on the validation of the kernel-driven Ambrals semiempirical BRDF model

is given in Appendix A. Please refer to this appendix for data sources, tables, �gures and an in-depth

discussion.

The ability of the Ambrals semiempirical BRDF model to describe naturally occurring BRDF shapes

was tested using 27 di�erent data sets measured on the ground or from airborne instruments. These data



3.1 THEORETICAL DESCRIPTION 31

sets include a wide variety of land cover types as will be encountered in global remote sensing. Among

these are barren types (soils of di�erent roughnesses), sparsely vegetated types (both patchy and uniformly

sparse), dense vegetation (both broadleaf crops, and grasses and cereal crops), and forests (both needleleaf

and broadleaf). When using such data sets to validate a BRDF model to be used in remote sensing at a

spatial resolution of one kilometer, a scaling problem clearly exists. However, currently no good data sets

over a variety of di�erent land cover types exists that has both coarse spatial resolution and good angular

sampling at several di�erent solar zenith angles. Therefore, �eld-measured data sets are still indispensable

for model validation. If the di�erent BRDF shapes met in the �eld are �tted well by a BRDF model,

it may be reasonably expected that the BRDFs observed for similar vegetation types at a scale of 1 km,

which will probably be smoother, will also be �t well. In case of mixed land covers, the Ambrals BRDF

model is expected to be better suited for modeling the mix than most other BRDF models (which were

derived assuming homogeneous scenes) due to its linear superpositioning approach. Scaling issues are further

discussed in Appendix F.

The 27 observed BRDF data sets were inverted for all available bands (mostly red and near-infrared)

and all solar and view angles simultaneously. None of these data sets were �tted with an RMS absolute

error of more than 0.046, the average RMSE being 0.034. Furthermore, the correlation coe�cient between

the modeled and the observed re
ectances was determined for the red band and the near-infrared band. In

the red band, 12 of the 27 data sets showed a correlation coe�cient larger than 0.9; 18 of 27 one larger than

0.8; and 23 of 27 one larger than 0.75. Only one data set had a correlation coe�cient smaller than 0.7, but

this data set was found to have irregular features in the observed red band re
ectances. In the near-infrared

band, 13 of 27 data sets showed correlation coe�cients larger than 0.9, 23 of 27 had ones larger than 0.8,

and 26 of 27 had ones larger than 0.75. These values indicate a reasonable agreement between modeled and

observed re
ectances, validating the Ambrals BRDF model.

With respect to the kernel combinations found to best represent each land cover type, two results are

mainly of interest. First, there is some correlation between the type of land cover being modeled and the

kernel combinations producing the best �t. In shadow-casting cases like a plowed �eld or a sparse forest, the

Li-sparse kernel was dominant. In cases of a dense forest, the Li-dense kernel produced the lowest RMSE.

In the case of dense crops, kernel combinations including the Ross-thick kernel produced best �ts. The

second �nding is that even though di�erent kernel combinations may produce small values of the RMSE

for a particular case, visual inspection of �ts reveals that the model with the lowest RMSE indeed �ts the

observed data better than a model with a slightly higher RMSE, demonstrating the bene�t of allowing

multiple kernel combinations.

Validation of the Ambrals BRDF model was carried out in parallel to an evaluation of the modi�ed RPV

model (Rahman et al., 1993b; Engelsen et al., 1996). The comparison shows that the Ambrals model results

are very similar, perhaps even slightly better, than those for the modi�ed RPV model.

Please refer to Appendix A for a full report of these validation results, including tables, �gures and more

detailed analysis.



32 3 ALGORITHM DESCRIPTION

3.1.5.2 Inversion and Fitting of Semiempirical Models to ASAS Data Researchers at University

College London recently applied two semiempirical models to directional image data obtained for a semiarid

region of West Africa near Niamay, Niger (Barnsley et al., 1996; Lewis et al., 1995; see Appendix J). In

this study, NASA's Advanced Solid-state Array Spectrometer (ASAS) (Irons et al., 1991) acquired image

data from an aircraft platform over the HAPEX-Sahel west central, east central and southern super-sites

on various dates during September 3{17, 1992. The ASAS acquires images at ten sensor view angles during

a single overpass | one at nadir and nine others at 15� increments between 75� forward and 60� aft of

the aircraft platform on which it is mounted. These images are recorded in 64 continuous narrow spectral

wavebands in wavelengths ranging from the visible to the near-infrared. Spatial resolution is about 4 m.

Data processing involved manipulating the multiple{view{angle and multiple 
ight{line ASAS image data

in four steps: (i) geometric registration; (ii) radiometric correction; (iii) atmospheric correction; and (iv)

estimation of the surface (spectral) BRDF and albedo through BRDF model inversion.

Geometric registration of the multiple-view-angle and multiple 
ight-line data was perhaps the most

problematic task. Standard polynomial warping techniques are generally unable to cope with the very high

frequency, localized geometric distortions present in most airborne scanner images. Consequently, Barnsley

et al. (1996) used an automated image registration procedure based on \interest point" extraction and

area-based matching of small patches of image around each interest point (Allison et al. 1991, Allison

and Muller 1992) to de�ne an initial polynomial mapping followed by pixel patch-by-pixel patch (typically

15 x 15 pixels) matching using adaptive least-squares image correlation (Otto and Chau, 1989). These

techniques are capable of registering multiple view-angle ASAS images to subpixel accuracy (<0.4 pixels)

globally throughout the scene (Allison et al. 1994). In this case, each of the o�-nadir images was registered

to the nadir view. Radiometric correction was e�ected using gain values provided by NASA to convert

the instrument's raw DN values to spectral radiances. Atmospheric correction was applied by use of the 6S

atmospheric correction code (Vermote et al. 1994) with atmospheric parameters derived from sun photometer

data (Brown de Colstoun et al., 1996).

With registered and corrected data at hand, the Walthall and Roujean models were inverted and �tted

to the data on a pixel-by-pixel basis (Barnsley et al., 1996; see Appendix J). This allowed the construction

of images of the weights associated with each term of each model. The nadir re
ectance images in the blue

and near-infrared bands have low contrast and appear noisy. In these bands, the models seem to be �tting

noise rather than signal. In contrast, the green and red bands show a coherent scene structure. The �rst

parameters from both Walthall and Roujean models are strongly related to overall brightness and thus mimic

the nadir re
ectance. The second and third parameters of the Walthall model show little spatial structure,

although some bright and dark spots seem to correlate well with particular patches in the nadir image.

In contrast, the Roujean model shows strong spatial structure in both the �rst and second parameters.

The second parameter is the weight of the geometric kernel, which seems to vary inversely with the �rst

parameter. This indicates that the BRDF becomes more isotropic with increasing brightness, which is not

unexpected if multiple scattering increases with brightness. The �ne texture in the images of the third
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parameter may be related to �ne errors in registration, rather than real changes in BRDF within the scene.

Overall, the weight of the third parameter is quite low, indicating that volume scattering is not important

for these surfaces. Since vegetation is quite sparse over most of the target area, this is not unreasonable.

These results demonstrate that a pixel-by-pixel inversion of empirical/semiempirical models is possible, and

that the model parameters vary systematically in a meaningful spatial pattern.

More recently, (Muller and Disney, 1997; Muller et al., 1997a, b) have processed all of the ASAS data

into surface directional re
ectance for all three study sites. Preliminary results are presented in Appendix F

of two applications of these spectral directional re
ectance �elds. In the �rst application, a study was

performed (results shown here for Southern Super Site and West Central Super Site) of the impact of spatial

resolution on the type of models which are retrieved. The results indicate that at 3m resolution, the modi�ed

Walthall model is chosen consistently over two di�erent cover types (millet and savannah) whereas at 30m,

90m and 240m the RossThick{LiDense is primarily chosen for the same regions. This indicates that we

may have di�culties using �eld spectro-radiometric data acquired at around a couple of meters to validate

MODIS/MISR derived BRDF/albedo over sparse canopies.

In the second application (Muller et al., 1997a), the ASAS modi�ed Walthall results were used to generate

training statistics for a TM supervised maximum likelihood classi�cation after registration and resampling

of the ASAS directional re
ectance values. This has allowed a spectral albedo map to be produced for

the whole of the Southern Supersite area at 30m for use in simulation and testing of the MODIS/BRDF

inversion algorithm. In addition, broadband albedo data are available for validating these ASA/TM-derived

spectral albedos to assess how accurate the inverted albedos will be (see Appendix G).

In the �nal application, a Monte Carlo ray-tracing system (Lewis and Muller, 1992) was used together

with geometrical-optical models of millet plants to simulate the radiance at the ASAS sensor, and these

values were compared with those extracted from ASAS after atmospheric correction (Muller et al., 1997b).

The MCRT allows studies to be made of the signi�cance of the biophysical parameters included within

the semiempirical models as well as the impact of di�erent sampling scenarios (MODIS only, MISR only,

MODIS+MISR, cloud-cover impacts) on the accuracy of the derived BRDF parameters and spectral as well

as broadband albedo values (see Appendix H for more details).

3.1.5.3 Inversion and Fitting of Semiempirical Models to AVHRR Data As part of an Euro-

pean Union consortium investigating land cover change in the Sahel, researchers at UCL have also been

investigating the application of the Ambrals model to AVHRR data (see Appendix J). Six months (May{

October 1992) of LAC derived surface re
ectance data of the HAPEX-Sahel grid square have been processed

using the model and aspects of model �t and model selection investigated (Lewis and Ruiz de Lope, 1996).

The results indicate that the Ambrals kernels are able to describe the shape of the BRDF (processed

on a 16-day window, 1-day step, moving window) well over the period of study. Relatively large errors

in model �t can, however, occur during the rainy season, due to variations in the surface re
ectance on

a sub-16-day timescale. In spite of this, the trends in normalized re
ectance, albedo and BRDF model
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parameters are generally well-maintained. The temporal trajectory of these model parameters is currently

being investigated with a view to providing information on variations in the surface cover.

The main kernel selection criterion in Ambrals, the RMSE in model �t, is found in many cases not

to provide very consistent results (either temporally and spatially). It is understood that Ambrals will

have to make use of additional information in aiding kernel selection, and so the team at UCL have been

investigating the issues involved. Currently, an approach that considers temporal consistency in the main

selection criterion, weighted by the RMSE is being tested. Early results indicate that this is indeed promising,

and that it can be implemented e�ciently within Ambrals.

In addition to this research, work is currently underway testing the application of Ambrals to the AVHRR

Path�nder (PAL) dataset for Africa north of the Equator. Two years of data have been processed so far

(1989 and 1992) and the 1992 results compared with the LAC data over HAPEX-Sahel described above.

While many of the trends observed appear to be similar in the two datasets, the magnitude of the trends

are very di�erent, probably mainly due to the poor atmospheric correction of the data (PAL corrects for

only Rayleigh scattering and ozone absorption).

3.2 THE MODIS BRDF/ALBEDO ALGORITHM

3.2.1 Model Inversion and Retrieval of BRDF and Albedo

3.2.1.1 Theoretical Background: Inversion A kernel-driven model has the form

R(�i; �v; �;�; I1; I2) =
nX

k=1

fk(I1(�)) kk(�i; �v; �;�; I2(�)); (28)

or, for a set of discrete values of the BRDF,

Rl(�) =
nX

k=1

fk(I1(�))kkl(I2(�)); (29)

where R is the re
ectance; �i and �v are the zeniths of view and illumination, respectively; and � is the

relative azimuth; � is the waveband; I
1
and I

2
are lists of parameters describing light scattering in the

scene, with the kernel-internal parameters; the parameters of the BRDF model; and kk the kernels, where

the index stands for a particular viewing and illumination geometry, (�i; �v; �)l. This formula expresses that

kernel-driven BRDF models for a waveband are formulated as a superposition of basic BRDF shapes, where

the kernel shapes k are functions of viewing and illumination geometry only (provided that the parameters

I
2
have been �xed); and the respective contribution of each kernel value kkl to the resulting re
ectance is

given by the corresponding parameter or weight fk , depending on the internal parameters as a function of

wavelength. The number of kernels to be superimposed is n. Usually three kernels are chosen | the �rst

is the constant unity, representing isotropic scattering, the second represents volume scattering, the third

surface scattering.

An observation consists of N directional measurements �0l(�) where l runs from 1 to N . The di�erence

between the modeled and the observed re
ectances is measured by an error function E, which generally is
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de�ned in the following way:

E
2(�) =

1

d

NX
l=1

(�0l(�)�Rl(�))
2

wl(�)
; (30)

where wl are the weights attributed to the respective observations. Choices for error weights include wl(�) =

1, wl(�) = �0l(�), wl(�) = Rl(�), or wl(�) = �02l (�). The quantity d is the degrees of freedom, i.e., d = N�n.
E is taken as the root-mean-square error, or RMSE.

Inversion of the BRDF model aims at determining the parameters k of the model. The parameters

wanted are those for which E attains a minimum. In other words, those k for which (dropping explicit

mention of waveband dependencies)

@E2

@fj
=

1

d

NX
l=1

2

wl
(�0l � Rl)

 
@�0l

@fj
� @Rl

@fj

!
= 0; (31)

provided that the solution to this equation is a minimum and not a maximum or a saddle point. The

derivative of the observed re
ectances with respect to the parameters is zero, of course, but for modeled

re
ectances @Rl=@fj we have

@Rl

@fj
=

@

@fj

 
nX

k=1

fkkkl

!
=

nX
k=1

 
@fk

@fj
kkl + fk

@kkl

@fj

!
=

nX
k=1

�kjkkl = kjl; (32)

where �kj = 1 if k = j, otherwise 0.

Thus,

@E2

@fj
=

1

d

NX
l=1

2

wl

(�0l � Rl)kjl = 0; (33)

or
NX
l=1

�0lkjl

wl
=

NX
l=1

Rlkjl

wl
=

NX
l=1

NX
k=1

fkkklkjl

wl
: (34)

Introducing the vector V and the Matrix M as

Vj =
NX
l=1

�0lfjl

wl
; (35)

Mjk =
NX
l=1

kjlkkl

wl

; (36)

we can write the equation for the parameters delivering the best �t as

Vj =
nX

k=1

Mjkfk (37)

and arrive at the solution

fk =
nX

j=1

M
�1
jk Vj (38)
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for the parameters. Thus, the BRDF model has been analytically inverted via an analytical solution to the

single stationary point of the error function. From physical arguments, we can show that this is the global

minimum (Lewis, 1995).

However, the values fk that are obtained by this procedure are not constrained to lie within proper

physical bounds. For example, if the kernels in a particular semiempirical model are inappropriate for the

surface type, the best �t might require a negative weight on one of the kernels, which is not physically

possible given the physical derivation of the weight functions. Although not yet implemented, it is a simple

matter to constrain the solution such that the fk lie within reasonable bounds via Lagrange multipliers

(Lewis, 1995). In the event that the model with the constrained solution actually presents the lowest error

among all semiempirical models, a 
ag will carry forward the information that the �t was constrained and

thus is of lower con�dence.

3.2.1.2 Advantages of the Kernel-Based Approach The algorithm that was developed for MODIS

BRDF inversion and albedo computing, (known as \Ambrals", the Algorithm for MODIS bidirectional

re
ectance anisotropies of the land surface) was programmed in a kernel-oriented, rather than model-oriented,

fashion so that it would be both 
exible and e�cient. Values of all kernels occurring at the viewing and

illumination angles at hand are computed and tabulated so that the functions have to be processed only

once for each geometric situation and each kernel . After that, each kernel value kkl is referred to via a

look-up table. This allows rapid computing, for example, of the matrixM as a function of the model chosen,

or of the re
ectances resulting from the parameters found (needed, for example, for calculating the RMSE).

Since the suite of models to be inverted share kernels, this makes the code e�cient by avoiding duplication

of computations. Trigonometric expressions that are shared by several kernels are also computed only once.

The algorithm's kernel-based approach has the additional advantage of easily allowing an increase in the

number of kernels and of formulating new models by allowing the free combination of any number of kernels.

This feature is also essential in the spatial degrading of the BRDF/albedo product (see Section 3.3.2 and

Appendix F).

3.2.1.3 Matrix Inversion and Error Function Used Inversion of the matrix Mjk =
P

l kjlkkl=wl

is performed by a standard LU decomposition algorithm. In the general case, is dependent on wavelength

and the inverse needs to be calculated for each band separately. However, if the weights wi are chosen to

be independent of the wavelength, M is independent as well, assuming that if the kernels contain internal

physical variables I
2
these have been set to �xed values. Then for each set of observations sampling a given

BRDF, M needs to be inverted only once for all bands observed.

This is the case with the error function chosen for the current BRDF inversion problem, which was

selected to measure the mean squared absolute deviation of modeled and observed re
ectances,

E
2(�) =

1

d

NX
l=1

(�0l � Rl)
2 (39)
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i.e., wl was chosen to be 1. The RMSE of a given model is de�ned as the root of the average of E2 over all

bands, although for selection of the best-�tting model, only bands 1{4 are considered. The weighting function

wl was chosen in this way because it allows most accurate modeling of the commonly found upturning of

the BRDF for large zenith angles, which is of importance in deriving albedo; the cost is a reduced relative

accuracy of re
ectances with a low value. Studies on penalty functions and more complex forms of will be

conducted in the near future.

3.2.1.4 Model Selection In the MODIS processing scenario, level-2 re
ectances that have been cloud

cleared and atmospherically corrected are binned into the MODIS level-2G grid over a period of 16 days

and combined with all MISR observations acquired during that same time. The data from each image are

interpolated to a spatial resolution of one kilometer, where each observation is weighted by the respective

overlap between the grid cell and the observation footprint. Quality information associated with the data

is translated to quality coe�cients that are used to weight individual observations in the subsequent BRDF

inversion. This allows special consideration of data where, for example, atmospheric correction was di�cult

or aerosol information was taken from standard tables because no aerosol retrievals were available.

The directional observations thus assembled are then analyzed by inverting the �ve model variants as

decribed above to �nd the Ambrals kernel combination that �ts the observations best. The four bands

common to MODIS and MISR are inverted �rst. The model chosen as best from this analysis is then

applied to the three remaining bands, in which only MODIS data are available. The model parameters

found are written to output along with extensive quality control data and other information necessary for

an assessment of the product. Integration of the BRDF is carried out to provide black-sky and white-sky

albedos.

In general, the kernel combination which provides the �t with the smallest root band-averaged mean

squared error (RMSE) as described above is selected. The two cases where an exception is made are if the

RMSE found is large, or angular sampling coverage is bad enough to mistrust the inversion, either because

observations span only a small angle range or their number is too small. In these cases information from

the supporting ancillary databases is used to limit the inversion.

If angular sampling is good but the RMSE found is high, the kernel combination suggested by the ancillary

data (previous BRDF, the historical accumulated BRDF database, land cover type, and topography) is used

instead (if the resulting RMSE is not much worse). The model parameters are still derived from a full

inversion of the re
ectances.

If angular sampling is bad or the number of re
ectances available is too small, a full inversion cannot

be trusted and gaps in the product would result. In this case, the BRDF kernel combination and model

parameters suggested by the ancillary databases will be used, but the magnitude of the BRDF (the isotropic

constant of the model) will be adjusted to the observed re
ectances. Through this the shape but not the

magnitude of the BRDF will be �xed. This procedure also guarantees that the re
ectance information

available in cases not permitting a full BRDF inversion will not be simply lost but used to the extent
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possible.

In each case, the source of the resulting BRDF information will be recorded so that users can �lter the

output according to their needs. The ancillary database accumulating BRDF knowledge over time, keyed

by season, and the relationships between land cover type and BRDF used will be established post-launch

from the data observed and updated at intervals.

The 
exibility of the Ambrals model means that the mathematical expressions used on adjacent pixels

may be slightly di�erent. While this is expected to provide the best BRDF and albedo information on a per-

pixel basis, it may introduce too much complexity in applications where a much simpler uniform approach

is desired. As a consequence, the MODIS BRDF/albedo product will always also provide the full inversion

results for the modi�ed Walthall BRDF model [Walthall et al., 1985; Nilson and Kuusk, 1989]. This model

is purely empirical and is expected to produce results of reduced accuracy, particularly under conditions of

sparse angular sampling. But the simplicity of the mathematical expression used and the fact that it will

be the same for all pixels make it attractive for applications where such a reduced accuracy is acceptable.

3.2.1.5 Albedo Calculation Deriving the directional-hemispherical and bihemispherical integrals from

the BRDF requires, in the general case, a numerical integration of the BRDF, which is computationally very

costly if it is to be performed routinely for a global product at the 1-kilometer scale. The linearity of

kernel-driven models with respect to their parameters allows a handy way out of this dilemma. Since the

integration is with respect to the occurring angles and only the kernels depend on these angles, and since

these are known in advance, the integral of the BRDF may be written as a weighted sum of the integrals

of the kernels, where the weights are the same as those in the BRDF model. The integrals of the kernels

may, then, be computed numerically in advance (once) and the results stored in a table. Albedo calculations

are then reduced to forming a simple linear combination of these tabulated values. This applies to both

black-sky and white-sky albedo. The black-sky albedo of the individual kernels is tabulated as a function of

solar zenith, where the zenith is incremented by a small amount (e.g., 0:25� | although the table is not large

in any case) and interpolated for intermediate values. Therefore, black-sky albedo at any solar zenith angle

and white-sky albedo for both models (the \best �t" model and the Walthall model) can be constructed

with almost no computational e�ort directly from the model parameters using these small look-up tables of

precomputed kernel integrals which will be provided to users with the product. Broadband albedos will be

given in a similarly parameterized form.

In addition, the product will provide a single set of black-sky albedo values for the median sun angle for

the suite of observations that were inverted to �t the BRDF. (Note that the black- and white-sky albedos

are provided in each of seven spectral bands, two aggregated bands and one broad band.)

3.2.1.6 Algorithm Flow and Execution Figure 3 demonstrates data 
ow in connection with the

BRDF/Albedo algorithm. Surface re
ectances produced by the MODIS and MISR atmospheric correction

algorithms are passed into a BRDF subsetting and database compilation process along with selected infor-
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mation on atmospheric state. These data are referenced to the Level 3 grid through a process producing

data pointers referred to as Level 2G. A compilation process builds from this Level 2G data a multiangular

re
ectance database with a common spatial resolution of 1 km for ingest into the BRDF/Albedo algorithm.

Decisions about observations to be discarded based on the atmospheric correction quality and weights to

be attributed to individual re
ectances are made at this stage, and a binning process is carried out using

footprint location information provided by the 2G pointer processing. This process also produces texture

information for the land cover classi�cation process.

The main BRDF/Albedo product generation process will be executed at the EDC DAAC. This process

additionally reads various Level 3 ancillary data, a kernel albedo look-up table (static, calculated pre-

launch, size less than 10 KByte), an albedo value look-up table giving albedos taking into account di�use

skylight as a function of atmospheric state (static, calculated prelaunch by Eric Vermote and also used

by MOD09:L2/Surface Re
ectance, size less than 1 GByte). If the BRDF/atmosphere coupling terms

used in atmospheric correction, which are based on the previous BRDF/Albedo product or other sources

remain unchanged, the new BRDFs obtained are regarded as �nal; otherwise new coupling terms are derived

utilizing the data describing atmospheric state, the surface re
ectances are updated, and an improved BRDF

is derived (see Section 3.2.4).

This process will also write an intermediate �le that contains BRDF-corrected re
ectances for input to

the Land Cover Product Database. These are bidirectional re
ectances for nadir view at the nominal sun

angle of the compositing period. The nominal sun angle is taken as the solar zenith angle at the time of

nominal overpass (about 10:30 AM) for the pixel on the eighth day of the 16-day compositing period. It will

vary with latitude and day of the year.

3.2.1.7 Quarter Degree Climate Model Grid In addition to the one-kilometer BRDF/Albedo prod-

uct, a product spatially degraded to a quarter-degree resolution will be produced for direct use in climate

models. This spatial degradation procedure is not simply an averaging exercise, since di�erent pixels are

described by potentially di�erent models with di�erent parameters. However, the Ambrals algorithm allows

for the free formulation of models with any number of kernels, and if adjacency e�ects are neglected, the

linearity of the modeling approach allows for the description of the BRDF of several pixels as a linear com-

bination of the individual BRDFs that are weighted by the respective areal proportion of each type. Since

the total number of kernels that may occur is limited, the number of kernels that need to be added to form

a BRDF model of the superpixel is limited to a reasonable number as well. Most importantly, the white-

sky and black-sky albedos of the superpixel may be directly computed without further assumptions. Thus,

the quarter-degree product can be directly formulated by descaling the one-kilometer product to meet the

coarser GCM scale requirements. This product will also retain some information on the subgrid variability

of albedo. Refer to Appendix F for a preliminary discussion of model behavior with respect to scaling.
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Figure 3: Flow chart for data processing by the BRDF/Albedo algorithm. Processes are shown as circles;

boxes are �les and/or data products.
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3.2.2 The Algorithm for BRDF Retrieval by the Product User

The BRDF/albedo product gives an identi�er of the best-�t Ambrals model kernel combinations and the

corresponding parameters found from inversion of the observations. A user of this product who wants to

standardize given observations to common viewing and illumination geometries or wants to extrapolate

observations to angles not observed, or wishes to reconstruct the BRDF for any other purpose will require

an algorithm that contains the code for all the kernels and allows easy accomplishment of the tasks required.

For this reason, the Ambrals code used for BRDF inversion to generate the product was programmed to not

only serve inversion, but also to serve forward modeling, i.e., reconstruction of the complete BRDF from

the parameters given by the product.

The code is written with the end-user of the product in mind. It is highly adaptable to speci�c situa-

tions; an extensive user-guide has been written to guide the user in operating the algorithm (this includes

instructions on how to alter, expand and adapt the code); it provides various options concerning details

of the forward modeling process, and it allows numerical integration of the BRDF if needed. This code is

also useful for theoretical studies as it allows free combinations of kernels to be investigated and adding of

new expressions. It may be used to create arti�cial data for testing algorithms depending on the BRDF

product. The code will be archived and distributed by the appropriate DAAC. It is presently available from

the authors upon request.

3.2.3 Narrowband to Broadband Albedo Conversion

Black-sky and white-sky albedos are provided for the land bands of MODIS and MISR. To provide a more

useful albedo product for global climate models (Dickinson, 1983), we also provide these albedos in three

broad bands. Two of these, 0.4{0.7 �m and 0.7{3.0 �m, are separated at 0.7 �m. This wavelength divides

the downwelling solar spectrum into two portions | one in which vegetation dominantly absorbs radiation

and another in which vegetation dominantly scatters radiation. The two are weighted and summed in a

third broadband albedo that covers the range 0.4{3.0 �m.

This narrowband-to-broadband albedo conversion will be achieved by weighting the narrowband albedos

by the associated proportion of downwelling solar irradiance they encompass. This method has been used

with nadir Landsat measurements (Brest and Goward, 1987) and was shown to be satisfactory by Ranson

et al. (1991), although Starks et al. (1991) report a case where a signi�cant bias occurred. Since the

downwelling solar irradiance depends on the atmospheric state during observation, there is an undesirable

dependence of the broadband albedos on that state. We currently are considering resolving this situation by

using the irradiance found from applying molecular scattering alone (clean-sky case). Note that the spectral

albedos will be provided by the MODIS BRDF/albedo product as well, so individual researchers will always

be able to carry out their own conversions.

Table 5 shows sample results illustrating the potential accuracy achievable in narrowband-to-broadband

albedo conversion using the seven MODIS land bands for three di�erent land cover types. The broadband
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Table 5: Spectral-to-Broadband Albedo Conversion: Accuracy of Results Based on 7-Band Splines as Com-

pared to Exact Results.

Exact Results Band-Based, Deviations

Cover total vis IR total vis IR

Type 0.4{2.2 �m 0.4{0.7 �m 0.7{2.2 �m 0.4{2.2 �m 0.4{0.7 �m 0.7{2.2 �m

grass 0.22 0.058 0.34 -0.9% +0.5% -1.2%

soil 0.18 0.10 0.24 -0.4% -3.2% +0.4%

snow 0.84 0.99 0.72 -2.1% -0.2% -4.0%

albedos derived from splines applied to the spectral values are within 1 or 2 percent of the true values.

3.2.4 The BRDF-Atmospheric Correction Loop

A problem arises in the �tting of models of surface bidirectional re
ectance from satellite observations.

Because surface-leaving radiance is multiply scattered between the surface and atmosphere and within the

atmosphere, the atmosphere and surface are coupled together in a complex fashion by radiative transfer.

This means that even with perfect knowledge of atmospheric properties, it is not possible to correct a top-

of-atmosphere radiance measurement to produce surface radiance or re
ectance without prior knowledge of

the surface BRDF. However, for our application, the surface BRDF is unknown and is to be retrieved from

atmospherically-corrected surface re
ectances.

To overcome this problem, the MODIS BRDF/Albedo algorithm couples atmospheric correction and

BRDF inversion in a one-iteration loop procedure. In short, atmospheric correction is performed on MODIS

observations under the assumption of an isotropic surface BRDF or BRDF derived from a prior product; the

re
ectances are then used to �t a new BRDF; the re
ectances are then recalculated using the new BRDF;

and if they have changed signi�cantly, a �nal BRDF is then �tted to the recalculated values. At present,

we plan only a single correction loop. Simulation studies show that a second loop changes the retrieved

parameters by only a few percent, except in cases of high turbidity (e.g., t=0.5). By the third or fourth

loop, change is only a few hundredths of a percent.

We have tested the one-iteration coupled process and have been exploring the impact of assuming an

anisotropic surface rather than an isotropic one in atmospheric correction (See Appendix D) by using the

radiative transfer code 6S (Vermote et al., 1994) and an implementation of the MODIS atmospheric correc-

tion scheme (Vermote et al., 1995). In its forward mode, 6S can calculate the re
ectance at the top of the

atmosphere for a given viewing and illumination geometry. In its inverse mode, 6S can perform atmospheric
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correction of top of atmosphere values to obtain surface re
ectances.

The atmospheric correction procedure describes the top of atmosphere re
ectance as

�toa(�s; �v; �) = �
0
+ e

��=�ve
��=�s�s(�s; �v; �) + e

��=�vtd(�s)��+ e
��=�std(�v)��0

+td(�s)td(�v)���+
(e��=�s + td(�s))(e

��=�v + td(�v))S(���)
2

1� S���
(40)

where �toa is the re
ectance at the top of the atmosphere; �
0
is the atmospheric re
ectance due to path

radiance; �s is the directional surface re
ectance; S is the re
ectance of the atmosphere for isotropic light

entering the base of the atmosphere; �s is the cosine of the solar zenith angle, and �v is the cosine of

the view zenith angle; � is the azimuthal di�erence between the sun and view zenith angle; e��=�s and

td(�s) are the downward direct and di�use transmittance of the atmosphere along the path of the incom-

ing solar beam, respectively; e��=�v and td(�v) are the upward direct and di�use transmittance of the

atmosphere in the viewing direction, respectively; � is the atmospheric optical depth; ��, ��0, and ��� are the

surface hemispherical-directional (black-sky albedo associated with the illumination angles), the directional-

hemispherical (black-sky albedo associated with the viewing angle), and the bihemispherical re
ectance

(white-sky albedo) respectively, and couple the atmospheric optical parameters and the surface re
ectance

properties.

Of these parameters, �
0
, � , td(�s), td(�v), and S are functions only of the atmospheric state. They

are calculated by the surface re
ectance product algorithm as derived from MODIS aerosol product inputs.

These parameters are stored with the Level 2 surface re
ectance of each pixel in an internal product read

by the BRDF/Albedo algorithm.

Note that operationally, there will be a di�erence in the input data that are obtained from MODIS and

MISR. The MODIS surface re
ectance is a bidirectional re
ectance | that is, an instantaneous value of the

BRDF at the view and illumination positions associated with the observation. The MISR data, however,

are hemispherical-directional re
ectance factors for nonisotropic incident radiation. They include the e�ects

of anisotropic di�use irradiance scattered into the view direction. To equate the two measures, we will

approximate the MISR measurement by using the proportion of di�use skylight to total irradiance to adjust

the value. This proportion is easily retrieved from the atmospheric correction procedure.

As demonstrated by Hu et al. (see Appendix D), the behavior of the atmospheric correction process

can vary signi�cantly depending on whether a Lambertian or anisotropic surface boundary is assumed. In

this study, the forward mode of 6S was �rst used to calculate top of atmosphere simulated MODIS and

MISR data in the red and near-infrared bands for four typical land cover types (Kimes et al., 1983, 1985,

and 1986). An angular sampling typical of MODIS and MISR for latitudes between 60�N and 60�S during

a 16-day period in March was used, while atmospheric conditions were simulated for a continental aerosol

model with a variety of aerosol optical depths.

First, an atmospheric correction using a Lambertian surface boundary was performed on the simulated

top-of-atmosphere values. The hemispherical-directional, the directional-hemispherical, and the bihemi-

spherical re
ectances are all assumed to be one. The �gures (Figures 1 and 2) and the RMSE tables
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(Table 3) in Appendix D demonstrate the signi�cant departure from the reality the Lambertian surface

assumption causes in the shape of the BRDF.

Next, the Ambrals BRDFmodel is used to �t a surface BRDF to the values corrected with the Lambertian

assumption and in combination with the atmospheric optical parameters, to generate new black-sky and

white-sky albedos. These in turn are used to correct the top of atmosphere values. The �gures (Figures 1

and 2) and tables (Table 4) in Appendix D show how closely the shape of the BRDFs derived from these

newly corrected values matches that of the original BRDF.

The results of this work clearly show that a coupling of the surface re
ectance retrieval with the BRDF

will be required for accurate inference of both surface re
ectance values and surface BRDF/albedo. The

results also point out the danger of assuming isotropic surface re
ectance.

3.2.5 Water Surfaces and Snow-Covered Surfaces

In certain regions or at certain times of year, there may be standing water on the land surface that will

create a forward-scattering re
ectance. Often such surfaces, such as rice paddies or 
ood zones, will be

partly vegetation-covered. We have provisionally added a new kernel based on the Cox-Munk model (1954)

for sea-surface scattering. (Note that we will not �t BRDF/Albedo functions where the land/water mask of

Menzel (MOD35), carried by MOD09, indicates deep water bodies.)

Preliminary research has indicated that snow-covered vegetation will be adequately handled by the Ross

kernels, although further research is need to validate these kernel models against �eld measurements and

data. Flooding and snow cover conditions can occur abruptly and only exist for a short time. Work is

currently underway to correctly accommodate such 
eeting signals in the 16-day processing cycle of the

product.

3.2.6 Topographic Correction

In addition to pixel shifts caused by topography, which should be corrected using level 1B navigation, there

are a number of radiometric e�ects induced by topography. Holben and Justice (1980) de�ned one of these as

the variation in radiance from an inclined surface compared with radiance from a horizontal surface, taken as

a function of the orientation of the surface relative to the light source and the sensor position. However, this

de�nition excludes any neighborhood e�ects that may be present, particularly at 1-km resolution. The most

obvious neighborhood e�ect is shadowing, including both mutual and self-shadowing of surface projections.

A less obvious topographic e�ect is the variation in path length within regions of complex terrain, which

has been studied in some detail by Teillet and Staenz (1993) for vegetation indices.

Proy et al. (1989) looked at topographic e�ects produced by di�use illumination variations that are

caused by sky hemisphere obscuration and mutual illumination in rugged terrain. Although these radiometric

e�ects are very small in sunlit areas, they can contribute up to one-third of the detected radiance in shadowed

areas. Burgess et al. (1995) used Monte Carlo ray-tracing (Lewis and Muller, 1992; Muller and Dalton,
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1988) to demonstrate that at the 1 km scale, even in rugged areas, residual topographic e�ects in NDVI can

be swamped by surface (facet) BRDF e�ects, and suggest that it is typically more important to account

for the latter than the former in NDVI products. However, the impact on individual wavebands, and hence

on BRDF modelling, albedo etc., will tend to be larger. Muller and Eales (1990) performed a quantitative

assessment of topography requirements and concluded that a global 100-m Digital Elevation Model (DEM)

was needed to account for radiometric e�ects in 1-km resolution imagery.

Since the primary e�ects of topography are manifest through mutual and self-shadowing, the Li-kernels,

which are based on physical models of mutual and self-shadowing of surface projections, may be expected

to accommodate much of the e�ect of within-pixel topographic variation.

(Liang et al., 1996) has performed some initial simulation experiments using both radiosity and Monte

Carlo ray-tracing on Gaussian elevation �elds to assess the accuracy of simulated radiance �elds which showed

large di�erences between the radiosity and Monte Carlo ray-traced simulations. Simulation experiments are

planned to be performed using 100-m DEMs, particularly for the coterminous U.S., to assess whether the

semiempirical BRDFs can account for most, if not all, of the radiometric e�ects due to topography. In

addition, this study will yield information on whether topographic radiometric corrections need to be made

prior to BRDF calculations and if so, how these will be made (see, for example, Newton et al., 1991, for

an example of the applications of Monte Carlo ray-traced re
ectance �elds and their application to the

georadiometric correction of Landsat-TM data).

3.3 PRACTICAL CONSIDERATIONS

3.3.1 Cloud Cover

The MODIS BRDF/Albedo product depends on the retrieval of a su�cient number of cloud-free, atmo-

spherically corrected bidirectional re
ectances so that the BRDF of a surface pixel can be reconstructed

with one of a selection of semiempirical models. However, the span of time over which these re
ectances

can be obtained from MODIS and MISR is constrained by the natural temporal variability of land surfaces.

In transitional seasons (e.g., spring and fall), a BRDF may remain constant for only ten days to two weeks,

while at other times (summer or snow-free periods of winter) a BRDF may be applicable for a month or

more. Therefore, the repeat schedule of the MODIS BRDF/Albedo product must balance the requirement

to capture the natural temporal variability against the very real di�culty of obtaining su�cient cloud-free

looks to reconstruct the BRDF adequately.

The MODIS cloud masks will be based on heritage algorithms from the International Satellite Cloud

Climatology Project-ISCCP (Rossow and Gardner, 1993), the CLouds from AVhRr (CLAVR) approach

(Stowe et al., 1991), the Support of Environmental Requirements for Cloud Analysis and Archive (SERCAA)

project (Gustafson et al., 1994, Neu et al., 1994), CO
2
slicing research underway at the University of

Wisconsin (Wylie et al., 1994) and spatial coherence techniques developed by Coakley and Bretherton (1982).

The ISCCP algorithms depend on only two bands (0.6 and 11 �m) from both AVHRR and geostationary
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satellites. Cloud/nocloud decisions are made at a 30-km resolution and the �nal global cloud amounts are

provided every 3 hours on a 280-km grid. The CLAVR multispectral algorithms use only AVHRR data

(bands 0.63, 0.86, 3.7, 10.7, 11.8 �m) and cloud/nocloud decisions are performed on groups of 4 GAC pixels.

SERCAA algorithms make use of both polar orbiting (AVHRR and DMSP) and geostationary satellites

and perform cloud/nocloud decisions at sensor resolution. Final results are provided on a 24-km resolution

grid (although the sensor resolution cloud analyses can be retained if required). The CO
2
slicing techniques

depend on High-resolution InfraRed Sounder (HIRS) polar orbiting data and use the 15 �m CO2 absorption

band to detect clouds at various atmospheric levels. These algorithms are useful in detecting thin cirrus.

The IR spatial coherence method is best used to discriminate between completely cloudy and clear pixels

when the surface is homogeneous (such as water) and when both cloudy and clear �elds stretch over large

regions. The MODIS cloud masks can use the many spectral channels (and spatial resolutions) available on

MODIS to incorporate aspects of all of these heritage algorithms. The 1.38 �m channel will be particularly

useful in detecting thin cirrus. There will also be an attempt to use a mulispectral approach to 
ag areas

of cloud shadowing although further research is needed on this issue. Neural nets and hierarchical decision

trees are being explored to handle the di�cult cloud detection cases posed by smoke, aerosols, and ice clouds

over snow. The MODIS Cloud Mask will provide cloud/no-cloud analyses at 1-km and 250-m resolutions.

Those observations identi�ed as cloud-free will be atmospherically corrected and then passed to the

MODIS BRDF/Albedo algorithm. Additional pixels associated with optically thin clouds may also be

corrected and incorporated into the database. After an appropriate amount of time, a su�cient number

of colocated cloud-free, atmospherically corrected radiances should be available to reconstruct the BRDF

associated with each 1 km grid cell.

However, some discussion was necessary to determine this appropriate amount of time. Several re-

searchers involved in BRDF or albedo reconstructions have encountered problems in accumulating su�cient

directional data. Meyer (1994), using some of the CLAVR cloud/nocloud algorithms on AVHRR data from

the American midwest, had di�culty in obtaining the �ve or more cloud-free data points necessary to ini-

tialize a 4-parameter BRDF model (Pinty et al., 1989). Meyer found that even after expanding his time

constraint to 30 days, he was only able to obtain su�cient clear- sky radiances 60 percent of the time. Wu

et al. (1994) used a semiempirical model (Roujean et al., 1992) to compute top-of-atmosphere BRDFs from

1-km AVHRR data of 19 homogeneous land cover types in North America. They used CLAVR and spatial

coherence cloud detection algorithms to isolate cloud-free data from the 1990-1992 growing seasons over each

of the 20 km2 sites. Even monthly accumulations of data revealed that only 30 percent of the data were

cloud-free and therefore usable in reconstructing the various BRDFs.

These researchers' concerns in obtaining su�cient cloud-free data are also supported by some cloud anal-

yses performed over a large region of east Asia with the SERCAA algorithms by the Geophysics Directorate,

USAF Phillips Laboratory and Atmospheric and Environmental Research, Inc. (AER) in an informal collab-

oration with BU. AVHRR HRPT data of the east coast of North America were accumulated over the 18-day

period September 3-20, 1994, and were carefully coregistered. SERCAA cloud algorithms were applied to
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Table 6: Number of Cloud-Free Looks Obtained From the NOAA-12 AVHRR Over New England September

3{20, 1994

Clear looks: 0 1 2 3 4 5 6 7 8 9 10 11 12{18

Proportion, %: 10 1 2 4 6 11 14 10 11 15 12 4 0

a 402-by-400 km region on images from the NOAA-12 AVHRR, which has a morning local crossing time

between 7:45 and 9:30 AM. Cloud cover statistics were generated on a 1-km basis (Table 6) Ten percent of

all pixels were continuously obscured, and no pixel had more than 11 cloud-free looks. The median number

of cloud-free looks was 7. Note that for the BRDF/Albedo Product, high, thin cirrus will be atmospherically

corrected, thus increasing the number of cloud-free looks.

The experience of these researchers in accumulating cloud-free data for BRDF research led to the adoption

of a 16-day MODIS BRDF/Albedo repeat cycle. Sixteen days will allow the acquisition of at least two MISR

looks, and should greatly increase the chance that su�cient directional data will be available for use with the

semiempirical BRDF models that make up the MODIS BRDF/Albedo Product. In the absence of clouds, 16

days would lead to between 30 multiangular observations available at the equator, and about 55 observations

at 60 degrees latitude, subject to variation with season. Using a coarse statistic of mean global cloud cover

probability (Wylie and Menzel, 1989; Wylie et al., 1994) as a function of latitude, one may predict that

generally about 15 to 20 multiangular observations will be available at all latitudes (except at the equator,

where an abundance of cloudy conditions is likely to create problems).

3.3.2 Errors and Sensitivity

A number of problems may a�ect the accuracy with which BRDF and albedo are retrieved. These include

random noise in the observed re
ectances; systematic bias; angular sampling range and density; and change

in the BRDF during the compositing period.

A systematic bias may be introduced into the observations from problems with atmospheric correction

at large zenith angles and adjacency e�ects. A bias might also occur as a result of problems arising from

combining the data of the MODIS and the MISR sensor, as they will di�er in atmospheric correction, in

the registration and resampling schemes applied, and in their slightly di�erent spectral characteristics (see

Section 2.6.1). We plan post-launch studies comparing simultaneous acquisitions of near-nadir center-swath

pixels for MODIS and MISR to test for such biases and develop any needed correction algorithms.

Angular sampling patterns as a function of latitude and time of year will also have an in
uence on the

accuracy of BRDFs and albedos retrieved. Although we may expect good angular coverage of the viewing

hemisphere from MODIS and MISR, the range of sun angles will be restricted by the sun-synchronous orbit

of the platform. Since the BRDF is inferred from a limited number of samples, the e�ect is to extrapolate
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Table 7: Estimate of Average Number of MODIS and MISR Observations Available given Cloud Cover:

Xsatview Orbital Simulation (Barnsley et al., 1994) and Cloudiness Probabilities From Wylie and Menzel

(1989) and Wylie et al. (1994).

Latitude Number of Clear-Sky Land Number of Remaining

Observations Cloud Observations

Winter Summer Prob. Winter Summer

{80 166 0 0.33 111 0

{60 54 0 0.42 31 0

{50 47 42 0.54 22 19

{40 40 36 0.63 15 13

{30 34 31 0.33 23 21

0 31 34 0.90 3 3

30 36 40 0.45 20 22

40 42 47 0.60 17 19

60 0 54 0.57 0 23

80 0 166 0.33 0 111
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the BRDF to solar zenith angles where no samples were acquired. This will a�ect the accuracy of black-sky

albedo and carry over into the white-sky albedo, since the latter is the integral of black-sky albedo over all

solar zenith angles. Thus, the angular ranges sampled as well as the density of samples in that range need to

be taken into account when assessing the results of inverting the observations. The quality 
ags described

in Section 3.3.5 and Table 1 will give some indication of the accuracy to be expected. Note that when data

from the MODIS on the PM platform are introduced into the algorithm in the post- launch period, the

range of sun angles and azimuths will be signi�cantly expanded, thus mitigating this problem. Data from

geostationary satellites, which observe with constant view angle but changing sun angle, will be used in the

validation phase and could be incorporated into later versions of the product.

A sampling problem also arises in MODIS bands 5{7, as noted earlier in Sections 2.6.1 and 3.2.1.4. Since

MISR does not record data in these wavelengths, BRDF/Albedo inference must be based entirely on MODIS

measurements, a situation that restricts the range of available view zenith and azimuth angles. However,

model selection is based on RMS error as measured only across bands 1{4. In this way, we ensure that the

selected kernels are appropriate to the physical scattering mechanism of the cover type and are not simply

chosen by accidents of noise in bands 5{7. Since the selection of a model speci�es a type of scattering

behavior, it constrains the shape of the BRDF, and thus we expect that �tting BRDFs in these bands will

not be subject to large errors.

Yet another concern is that the BRDF and albedo of the land surface is not constant, but may be expected

to vary with time. Vegetation growth and senescence will be a major cause of BRDF/Albedo change, since

much of the scattering behavior of land surfaces is determined by the vegetation cover. Generally, vegetation

processes vary slowly and may be regarded as constant during a 16-day period. However, rapid change may

be expected at some times, as when a crop cover is harvested, or when a soil is wetted by rainfall just

prior to an observation. Another possibility is that wind e�ects on vegetation canopies will change leaf

angles su�ciently to in
uence the BRDF. Rapid changes of this nature may in
uence the BRDF and albedo

retrieved during a cycle, especially if one of the MISR overpasses records a surface condition di�erent from

that seen by MODIS on other days in the cycle. In such a case, we may expect that the RMSE of the

model �t will be larger, and the BRDF/Albedo value will be 
agged with that characteristic. It may also

be possible to detect and 
ag such major changes directly by such strategies as analyzing the time sequence

of near-nadir measurements from both instruments. Also, a pre-inversion outlier analysis may be used to

�lter out extreme cases.

Landscape variability, convolved with the sensor's footprint as it changes with acquisition angle, will also

add error. Although the surface cover may be quite varied at MODIS/MISR spatial resolutions of 250-m to

1.1-km, this does not present a problem for the BRDF/Albedo algorithm, since the semiempirical models are

linear BRDF combinations. That is, the BRDF of the mixed pixel will be equal to the sum of the BRDFs

of the di�erent cover types within it as weighted by their relative areas, provided that adjacency e�ects may

be ignored. This property is also important for degrading BRDF and albedo to spatial resolutions of less

than 1.1 km when required, as for example for global climate modeling at 0.5� resolution.



50 3 ALGORITHM DESCRIPTION

However, scene heterogeneity is partly a function of resolution cell size. Given the larger projected IFOV

of MODIS at extreme o�-nadir angles, the e�ect will vary in magnitude across the instrument scan line.

As a result, spatial autocorrelation will increase and we may also expect that angular samples obtained at

extreme view angles will also be more highly correlated. One possible impact of this may be to smooth the

apparent BRDF at extreme view angles by reducing the spatial variance in detected radiance (Barnsley and

Kay, 1990). However, the product will be derived from MODIS bands with 250- and 500-m spatial resolution

that are gridded 1-km; similarly, the MISR product will be derived from collapsing 275-m spatial resolution

data to 1.1 km. These data characteristics will reduce the e�ect to an important degree. Some aspects of

spatial scaling a brie
y discussed in Appendix F.

A related e�ect is misregistration noise, in which the geolocation of an observation contains errors. If

the errors are random and unbiased, then the e�ect will be to enlarge the e�ective footprint of the detector

and smooth the BRDF. Note that extensive e�orts will be made by both MODIS and MISR teams to reduce

biases in geolocation using postlaunch characterization of instrument performance. Other than reducing

the spatial resolution of the product, there is little that can be done to correct for the e�ects of errors in

registration.

In order to accommodate noise, bias and sampling e�ects, we note that the inversion algorithm attributes

individual weights to each observation. This allows us to lessen the impact of problematic data points by

reducing their weight, rather than simply eliminating them. We may want to use some of the information in

problematic points, especially if they were acquired in an angular range that is otherwise not well sampled.

Another factor in
uencing the quality of the product is data availability. The MISR Level 2 surface

product will be phased in during the �rst �ve quarters following launch, so that in the immediate post-

launch period, the BRDF/Albedo product will be derived only from MODIS data for many parts of the

world. As the sixth quarter approaches, successively more area will be covered by the MISR product until

land and tropical ocean coverage is complete. Quality 
ags will indicate when the BRDF/Albedo product

is made for a grid cell without MISR data (see Table 1).

The issues of noise, bias and sampling need to be addressed systematically as part of the development of

the product. The following two sections, as well as Appendices B and C which give greater detail, discuss

the two most important of these e�ects: the in
uence of noise-like e�ects in the re
ectances and the e�ect

of changing and limited angular sampling on BRDF and albedo retrievals.

3.3.2.1 Retrieval Accuracies of BRDF and Albedo from MODIS and MISR Angular Sam-

pling

Note: A full detailed report on the retrieval accuracies from MODIS and MISR angular sampling using the

kernel-driven Ambrals semiempirical BRDF model is given in Appendix B. Please refer to this appendix for

tables, �gures and an in-depth discussion.

A study was carried out to determine the e�ects of the particular angular sampling available from

MODIS and MISR on BRDF and albedo retrievals, and the e�ects of seasonal and latitudinal changes in
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Table 8: Summary of Median Predicted Retrieval Accuracies at the Mean Sun Zenith Angle of Observation:

All Latitudes, Times of Year, Biome Types.

Model Albedo Nadir Re
ectance

Ambrals 3.1 (0.5{9.6) 3.3 (0.7{8.1)

mod. RPV 3.2 (0.4{8.3) 2.7 (0.9{8.8)

mod. Walthall 5.0 (1.1{11.8) 14.5 (2.3{35.8)

that sampling on these parameters. Since the exact distribution of angular sampling is important for a study

as this, and observed BRDFs are not sampled in a corresponding manner nor are available in conjunction

with ground truth, the only way to conduct such a study is to use a complex numerical forward model to

simulate observations and then use a simpler inversion BRDF model to invert them and derive quantities of

interest. A comparison of this sort, model against model, clearly has its drawbacks, as problems found could

be due to either model. For example, if the inversion model has problems �tting the BRDF at large zenith

angles, the problem could be due to unrealistic behavior at large zenith angles in either model. Still, in the

absence of real MODIS and MISR data this method is the best available to reach some understanding of the

accuracy to be expected from MODIS and MISR BRDF and albedo retrievals given their speci�c angular

sampling geometries.

The study was conducted as follows. The orbital simulation tool Xsatview (Barnsley et al., 1994) was

used to generate simulated MODIS and MISR viewing and illumination geometries for geographic latitudes

of observation between 80 degrees south and 80 degrees north, and for 8 di�erent 16-day time periods

throughout days of the year. For each of the observation geometries generated, a discrete ordinates method

radiative transfer code (Myneni et al., 1992) was used to compute simulated observations of the bidirectional

surface re
ectance for six distinct BRDF types resembling six di�erent land cover types in the red and the

near-infrared (NIR) wavebands. These types were grasslands, semi-arid shrublands, broadleaf crops, savanna,

broadleaf and needleleaf forests.

The resulting re
ectances were then inverted using the Ambrals kernel-driven BRDF model. For com-

parison, the modi�ed RPV BRDF model (Rahman et al., 1993b; Engelsen et al., 1996) and the empirical

modi�ed Walthall model (Walthall et al., 1985; Nilson and Kuusk, 1989) were also inverted.

The accuracy and variation with which the following parameters were derived was investigated: nadir-

view re
ectance and black-ksy albedo at the mean sun angle of observation ("interpolation"); nadir-view

(actually, 10 degree zenith angle to avoid the hotspot) re
ectance and black-sky albedo at nadir sun angle;

and white-sky albedo.
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Table 9: Summary of Predicted Retrieval Accuracies: All Latitudes, Times of Year, Biome Types and Solar

Zenith Angles, Irrespective of the Solar Zenith Angle of Observation. Median and Two-Thirds of Cases

Range, the Ranges Being With Respect to Solar Zenith Angle.

Model Albedo Nadir Re
ectance

Ambrals 2.0{8.1 (0.5{16.0) 3.2{7.9 (0.7{28.7)

mod. RPV 2.5{7.9 (0.4{15.4) 2.3{10.3 (0.9{28.2)

mod. Walthall 3.5{26.5 (1.1{48.6) 8.7{19.0 (2.0{55.6)

Table 10: Summary of Predicted Retrieval Accuracies as a Function of Cloud Probability: All Latitudes,

Biome Types and Solar Zenith Angles for a 16-Day Time Period Beginning Day of Year 96. Median and

Two-Thirds of Cases Range, the Ranges Being With Respect to Solar Zenith Angle.

Prob. of Cloud Albedo Nadir Re
ectance

0 % 2.0{7.8 (0.7{18.4) 3.2{9.2 (0.4{31.4)

25% 1.9{8.0 (0.8{17.9) 3.2{9.0 (0.5{30.8)

50 % 2.3{8.1 (0.7{18.6) 3.1{9.2 (0.7{31.2)

75 % 3.1{9.0 (0.7{18.7) 2.6{9.3 (0.7{29.6)
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In a �rst step, accuracies possible if no observations are lost to clouds were derived. These are the

bottom-line accuracies that allow studying how additional e�ects lead to an increase of error. Table 8

summarizes error across band for retrievals at the mean sun angle of observation. The numbers given refer

to the median (typical) relative error made and the range of relative errors typically found between good

and bad retrievals. The Ambrals and the modi�ed RPV BRDF models perform similarly well, with median

accuracies of albedo and re
ectance retrievals of only a few percent (less than 10 percent even in typical bad

cases); but the modi�ed Walthall model shows larger errors due to its empirical nature. This shows that

the semiempirical models retain some of their physical properties despite the severe approximations made in

deriving them. The modi�ed Walthall model is attractive only because of its great mathematical simplicity,

which is attractive to some applications where accuracy requirements are less strict.

Table 9 shows results for a more severe test. It gives median expected errors for retrievals not only at the

mean sun angle of observation but at other sun angles (0, 30 and 60 degrees) as well, testing extrapolation of

the derived parameters away from the angles of observation. The numbers given refer to the median (typical)

relative error made, the range being with respect to variations in the sun zenith angle of prediction, and the

range of relative errors typically found between good and bad retrievals. Despite the severity of the test,

one may see that both nadir-view re
ectance are retrieved to within 10 percent at all sun zenith angles,

irrespective of the angle of observation. Again results for the modi�ed RPV model are very similar, but

those for the modi�ed Walthall model are clearly inferior, with median errors of up to 25 percent found at

some sun angles.

Table 10 determines whether these accuracies are expected to strongly deteriorate as observations are

lost to cloud cover. It shows that this is not the case even if 75 percent of observations are (randomly)

lost. This is true if loss is such that the angular sampling patterns gets sparser, but good angle coverage

is retained. Retrievals are expected to still be approximately accurate in line with Tables 8 and 9 in the

presence of clouds.

Please refer to Appendix B for a full report of this retrieval accuracy study, including tables, �gures and

more detailed analysis.

3.3.2.2 Sensitivity of MODIS and MISR BRDF and Albedo Retrieval to Noisy Data

Note: A full detailed report on the noise sensitivity of the kernel-driven Ambrals semiempirical BRDF model

for MODIS and MISR angular sampling is given in Appendix C. Please refer to this appendix for tables,

�gures and an in-depth discussion.

Actual measurements of surface re
ectance will always include a certain amount of noise, which may

be random, systematic, or a combination of both. Such noise will result in error in retrievals of BRDF

parameters and albedo. A key criterion to assess the validity of the retrieval process is to verify that it does

not amplify the noise-like errors associated with individual measurements of surface re
ectance. In order to

investigate this problem, a full noise sensitivity study was conducted for the Ambrals BRDF model.

The behavior of kernel-driven BRDF models under the conditions of varying angular sampling and noisy
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data can be studied analytically due to the mathematical form of these models. It is given by the the

so-called \weights of determination", calculated using theory that originates with Gauss (Whittaker and

Robinson, 1960). Kernel-driven models give the re
ectance R in form of a sum, R =
P
fiki, where fi are the

model parameters and ki are mathematical functions (\kernels") giving basic BRDF shapes depending only

on sampling geometry. The expected error in a term u given by a linear combination of model parameters,

u =
P
fiUi (e.g., R itself at a given combination of angles, or integrals of the BRDF such as directional

and di�use albedo), is given by �u = e=
p
wu, where e is the estimate of standard error in the observed data

(approximated by the RMSE in model �tting), and 1=wu is the weight of determination of term u under the

sampling considered. This weight is given through 1=wu = [U ]T [M�1][U ], where U is a vector composed of

the terms Ui and M�1 is the inverse matrix providing the analytical solution to the problem of inverting a

set of re
ectances Ri for model parameters fi minimizing a given error function. Note that this analysis is

independent of any speci�c BRDF function.

In our investigation, we have studied the sensitivity to random noise of all kernel combinations that

comprise the Ambrals BRDF model using sampling for a variety of combinations of the MODIS and MISR

sensors, and for di�erent periods of data accumulation. From these, we here report selected �ndings on

16-day sampling only for 3 di�erent sensor combinations. Both interpolating and extrapolating the BRDF

were tested in that nadir re
ectance and directional-hemispherical (\black-sky") albedo were derived both

at the mean sun angle of the observation and for nadir sun. Additionally, bihemispherical (\white-sky")

albedo and the model parameters themselves were investigated.

Table 11 summarizes �ndings. The base case studied was 16-day sampling for combined MODIS and

MISR data, as for the MODIS BRDF/albedo product. We further investigate whether using MODIS data

alone is an option, and whether a second MODIS sensor to be launched on the EOS-PM-1 platform is a

potential substitute for MISR in view of the three additional bands that MODIS has over MISR. Table 11

lists �rst the median weights of determination found for sampling throughout the year and at all latitudes.

Given are the values found for the BRDF model with the smallest and with the largest median weight.

Second, it gives the worst-case range of values. Range here is de�ned as the central two thirds of values

occurring.

Results show that the MODIS-AM/MISR sensor combination will allow retrieval of the BRDF with

an accuracy that is smaller than the RMSE of the inversions (weights if determination smaller than one).

Retrieval of nadir re
ectance and black-sky albedo at the mean prevailing sun zenith angle is very stable

and more reliable than deriving these quantities for a nadir sun. But even the latter, requiring extrapolation

of the BRDF to angles where typically no observations were made, is possible with an accuracy of less

than the value of the RMSE. The same is true for the white-sky albedo. The expected error of the model

parameters themselves is larger than that of derived quantities. Naturally, cloud cover will increase these

error estimates. Assuming that the angular distribution of samples is not a�ected by loss of observations

due to clouds, the weights of determination can be shown to increase as 1=
p
N , where N is the number of

observations.
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Table 11: Median Weights of Determination (left) and Worst-Case Ranges of Weights of Determination

(right).

Left: smallest and largest median error of models; Right: smallest and largest worst case model error.

Rnad = re
ectance at nadir view angle; bsa = black-sky albedo; wsa = white-sky albedo; fvol = volume

scattering kernel coe�cient; fgeo = surface scattering kernel coe�cient.

Median Error Weights Worst-Case Ranges of Error Weights

16{day sampling MODIS{AM MODIS{AM MODIS{ MODIS{AM MODIS{AM MODIS{

+ MISR AM+PM AM+PM

Interpolation Rnad 0.18{0.23 0.30{0.40 0.17{0.23 0.18{0.28 0.29{0.44 0.17{0.25

�s = h�si bsa 0.16{0.18 0.25{0.55 0.15{0.29 0.15{0.20 0.40{0.72 0.23{0.41

Extrapolation Rnad 0.17{0.93 0.28{3.45 0.16{1.94 0.73{1.08 1.47{5.72 0.86{3.18

�s = 0 bsa 0.18{0.28 0.29{0.82 0.17{0.45 0.19{0.49 0.30{2.54 0.17{1.47

Global,
R
�sd�s wsa 0.17{0.42 0.31{1.60 0.18{0.95 0.21{0.82 0.66{2.42 0.40{1.41

Parameters fvol 0.15{0.89 0.39{2.01 0.23{1.19 0.33{1.76 1.21{3.52 0.72{1.97

fgeo 0.27{0.60 0.68{2.32 0.39{1.28 0.45{0.69 0.99{3.73 0.58{1.99

Using the MODIS-AM sensor alone yields a worse product quality, notably for nadir-view nadir-sun

totally angle corrected re
ectance, and nadir-sun albedos. This emphasizes the importance of combining

MISR data with MODIS data for a sound retrieval. The MODIS-AM/MODIS-PM sensor combination will

allow a better retrieval than when using MODIS-AM alone, but is not as good as using MODIS-AM/MISR.

This suggests that MISR should also be used in retrievals after the launch of MODIS-PM in the four bands

concerned.

In summary, these results show that BRDF and albedo can be retrieved from noisy re
ectance data both

at the prevailing mean sun angle of observations and at other angles to within a fraction of the noise RMSE

under conditions of angular sampling as obtained from the combined MODIS and MISR sensors, using the

kernel-driven Ambrals BRDF model. The noise sensitivities reported will increase as cloud cover leads to a

loss of observations, but since the numbers reported are mostly rather small, this will not constitute a major

problem.

For comparison, an equivalent analysis was also conducted for the modi�ed RPV BRDF model, showing

that it is similarly stable with respect to albedo and re
ectance retrievals (two of its three parameters seem

to be rather susceptible to noise, though). Where one model has an increased susceptibility to noise, the

other does, too, demonstrating that the problem lies in the angular distribution of samples available, not in

the models themselves.

Please refer to Appendix C for a full report of these noise sensitivity results, including tables, �gures
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and more detailed analysis.

3.3.3 Numerical Computation Considerations

On the computational side, the two issues of interest are requirements in computing power and storage size

of the output product. No special requirement is foreseen for the memory required for execution of the

algorithm.

Timing was conducted on the version 1 software delivered in the summer of 1996 at SDST. There are two

processes currently being delivered for the BRDF/Albedo product. One is the multiangular 1-km re
ectances

database building process (MOD43B1) which serves several other products besides BRDF/Albedo and is

in itself not strictly related to BRDF and albedo retrieval. Running on the SDST-supplied synthetic data

set, scaled for latitudinal variations in the number of observations occurring, and including a 4/7 share of

processing for MISR data, this process is currently estimated to require 400 MFlop/s of computing power.

The actual BRDF and albedo process (MOD43B2) was timed not using the synthetic data set but a

more realistic SCF-produced data set. This set was more realistic in that it contained a BRDF (which

the SDST-provided synthetic data set does not) and it was scaled to re
ect typical average numbers of

observations. The process is currently estimated to require 300 MFlops/s of computing power.

These numbers were derived using SDST-provided assumptions and following SDST's computing outline.

Increases in speed are possible for the version 2 code but hard to quantify at present.

The size of the BRDF/Albedo Product is found to be 33.1 GByte in 16 days or 2.1 GByte per day, each

subdivided into sets of 355 tiles, for land only.

3.3.4 Calibration and Validation

The prelaunch e�orts to validate the BRDF/Albedo Product emphasize: (1) a validation of the ability

of the semiempirical models to �t observed measurements of bidirectional re
ectance, and by integration,

albedos; and (2) a validation of the ability of the algorithm to process data acquired over large regions in an

appropriate and e�cient fashion. In the postlaunch era, validation e�orts will focus on a comparison of the

BRDFs and albedos produced by the operating algorithm with the actual measurements acquired during

the initial period of product compilation.

All of these e�orts rely on the availability of diverse, well characterized test sites with su�cient ground

instrumentation to accumulate comprehensive validation data sets. The MODLAND products teams are

embracing the EOS test site �ve-tiered hierarchy of (1) Intensive Field Campaigns (such as Boreas and

LBA); (2) Fully Instrumented Long Term Super Sites (such as the ARM/CART sites); (3) Biome Tower

Sites (networks of long term instrumented sites such as LTER); (4) Globally Distributed Test Sites (min-

imally instrumented permanent sites widely distributed over the globe such as SURFRAD or the NOAA

CMDL Flask Network); and (5) Instrument Calibration Sites (such as White Sands). While individual team

scientists are involved in all the recent and planned Intensive Field Campaigns, and at the ARM/CART
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sites, White Sands or Railroad Playa, the MODLAND team is specially focusing on the development, char-

acterization and instrumentation of the Tier 3 and 4 sites. The current plan is to have 10 Tower Sites

in place prelaunch and add 10 more soon after launch with as many as 60 operating worldwide eventu-

ally. Quantities to be observed for radiometric validation are the following: (1) atmospheric properties

(aerosol optical thickness and properties, water vapor, ozone); (2) irradiance characteristics (downwelling

irradiance total and angular distribution); (3) re
ectance characteristics (land surface BRDF, directional-

hemispherical re
ectance and bihemispherical re
ectance); (4) land surface properties (land surface/canopy

type and major structural characteristics, current seasonal state, LAI, leaf re
ectance, soil brightness and

type). The instrument package (CIMEL multi-directional sunphotometer, pyranometer, pyrgeometer, gas


ux instrumentation, and basic meteorological instrumentation) and temporal and spatial sampling plans

will be prototyped at two existing research sites (the SALSA site and the Oak Ridge site) in the summer of

1997.

In addition to ground measurements from these Tier 3 Tower Sites or from Tier 2 Intensive Field Cam-

paigns, the BRDF/ALbedo Product validation e�ort will rely extensively on laboratory measurements,

modeling exercises, and data from multidirectional aircraft and space based sensors.

3.3.4.1 Validation of Model Fit. Future validation of the ability of semiempirical models to �t ob-

served data involves laboratory, �eld, and aircraft measurements. In the laboratory, data from two ongoing

research programs are of particular interest. The �rst program involves a collaboration between Boston

University and the Chinese Academy of Science. As a part of this program, data were acquired under our

direction at a unique Chinese facility-the Solar Simulation Laboratory of the Jingyuetan Remote Sensing

Test Site, Changchun, China (Strahler and Liang, 1994). In this laboratory, we illuminated several target

plant canopies of 1 m2 extent with a parallel beam from an arc lamp providing near-solar illumination

conditions. A semicircular framework, moving in a circular target around the track, supported radiometers

acquiring measurements at 10� increments of view zenith and azimuth in Thematic Mapper Bands 1{4.

Solar zenith angle was variable between 0� and 45�. Data acquired in 1994 and 1995 included canopies

of soybean, nasturtium, and other plants as well as bare soil. Because these data were acquired without

signi�cant di�use illumination, they do not require atmospheric correction. The data are currently in the

analysis phase, and early indications are that the semiempirical models �t the observations very closely

(Strahler et al., 1996). More data acquisitions are planned for 1997.

A second set of laboratory data that is being used to test the �t of the semiempirical models to re
ectance

measurements has been acquired by J. Miller at York University { multiband, multiangular measurements of

re
ectance of an arti�cial conifer canopy acquired by the Compact Airborne Spectrographic Imager (CASI)

instrument (Babey and So�er, 1992). The canopy consists of model trees designed to simulate the physical

shape and structure of individual conifer crowns (So�er and Miller, 1995). They are sprayed with cellulose

material that emulates the spectral response of leaf tissue, and are arranged according to �eld measurements

of real conifer stands. This laboratory setup allows a systematic exploration of the in
uence of background
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brightness, tree density, and solar zenith angle on the BRDF in a way that is not possible in a �eld campaign.

In tests involving a random spatial distribution of trees and a spatial pattern resembling the BOREAS Jack

Pine site, the semiempirical models have �t the data quite well.

In addition to these direct laboratory measurements, numerical simulation studies using the Monte Carlo

ray-tracing system (Lewis and Muller, 1992) and Botanical Plant Modelling System (Lewis, 1990; Lewis et

al., 1991) will be used at UCL to simulate directional re
ectance measured by instruments with an equivalent

pixel IFoV of 3m at the vegetation canopy level. (see section 3.1.4.2 for more details as well as Appendix H).

This e�ort is providing a full simulation of all the characteristics a�ecting the BRDF and albedo under

controlled conditions. In particular, the in
uence of the BRDF of plant components (such as leaves) and the

soil on the canopy-level BRDF can be studied. This e�ort will also aid in understanding how semiempirical

BRDF parameters may be interpreted in a physical sense and whether any of the parameters, such as LAI,

have any physical signi�cance. Simulation of datasets for HAPEX-Sahel are the primary focus of the work

at present.

Another source of model validation data exists in ground measurements of surface radiance as a function

of view and illumination positions. Such data are usually expressed as bidirectional re
ectance factors

(BRFs) and include the e�ects of di�use (sky) irradiance of the target. However, there is no barrier to �tting

these data to semiempirical models as long as it is noted that the functions describe BRF observations rather

than true BRDFs. In such cases, the presence of skylight will smooth the BRDF shape to some degree.

Thus far, we have �t semiempirical models to over 27 sets of observations with very good results (see

Section 3.1.4.1 and Appendix A). These include the classic datasets of Ranson et al. (1985), Kriebel (1978)

among others. In addition, a considerable archive of angular surface re
ectance data acquired by D. Deering

with the PARABOLA instrument was been tested. There are also plans to collocate PAROBOLA with the

CIMEL directional sun photometer during the Tier 3 Tower Site prototype exercise in the summer of 1997.

It is hoped that a downward pointing scanning CIMEL photometer will adequately characterize the BRDF

in the vicinity of the tower in an automated fashion and provide a valuable source of pre and post launch

validation data.

As part of the ongoing collaboration between the Boston University Center for Remote Sensing and the

Chinese Academy of Science (CAS) Institute of Remote Sensing Application (IRSA), we will also acquire

�eld data from an agricultural experiment station located at Yucheng, Shandong Province, China. Instead

of multiangle measurements made during a short time period, we will observe crop re
ectance from a �xed

position on a nearby tower as sun angle changes during the day. In this way, we will observe the day-to-day

variability of directional re
ectance as environmental and crop conditions change.

Aircraft acquisitions are a further source of directional re
ectance data. The principal source of such

data is the ASAS (Advanced Silicon Array Spectrometer) instrument (Irons et al., 1991), which acquires �ne

spatial resolution multispectral measurements at view zenith angles from +75� (forward) to �60� (aft) in

the 
ight direction. Typically, observations are made along the principal plane, across the principal plane,

and at an azimuth angle of 45� to the principal plane. Most ASAS data are of homogeneous targets and
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are accompanied by measurements characterizing aerosol properties and optical depth, allowing testing of

the BRDF-atmospheric correction loop (see Section 3.2.4). Among the investigators on the BRDF/Albedo

team, we already have about a dozen ASAS datasets that may be used for validation.

ASAS data from the Hapex-Sahel has been processed at UCL to remove geometric distortions due to

aircraft motion (Allison et al., 1991; Allison and Muller, 1992; Allison et al., 1994). Unfortunately, the C-130

aerial photographs taken at the same time as the ASAS imagery were not taken with su�cient stereo overlap

to create detailed DEMs and orthoimages and no GPS-based control has been able to be acquired from HSIS

for geocoding of the aerial photographs using a 30m DEM created using ERS tandem SAR interferometry.

However, using the 6S simulation system (Vermote et al., 1994) and in situ atmospheric optical depth mea-

surements from Halthore (Brown de Coulstoun et al., 1996) , it was possible to atmospherically correct the

data (see Section 3.1.5.2). Barnsley et al. (1996) describe how multiple 
ight-lines of ASAS processed data

over the HAPEX- Sahel southern super-site were used to retrieve empirical (Walthall) BRDF distributions

at 3m resolution using the aforementioned methods (see Appendix J). Work has been completed at UCL to

process the entire HAPEX-Sahel dataset (18 
ight-lines over 3 sites) into "at surface" re
ectance". These

registered re
ectance maps have been used to invert "ambrals" and for two models (modi�ed Walthall

and RossThick-LiSparse) have been used to derive spectral BRDFs and spectral albedos for a complete

LANDSAT-TM scene (see section 3.1.5.2 and Appendix G). The derived albedos, once integrated over the

shortwave region, will be compared with in situ measurements acquired by solarimeters (Allen et al., 1994).

Work is also underway at UCL to extend these studies to other ASAS 
ight-lines, where the other necessary

datasets (e.g., atmospheric optical depth measurements, aerial photographs, DEMs) are available.

In addition to this work, similar inversions will also be made at UCL with atmospherically-corrected

airborne POLDER data over HAPEX-SAHEL (Roujean et al., 1996) and BOREAS (Bicheron et al., 1996;

Breon et al., 1996) and results compared with those from ASAS (see Section 2.6 for more detail on the

POLDER instrument). POLDER simulator data are also available for the La Crau test site in southern and

for BOREAS (V. Vanderbilt, personal communication). At present, the La Crau data are being �tted to

semiempirical models at CAS-IRSA under the direction of X. Li, a member of the POLDER Science Team

who is also a member of the BRDF/Albedo product team.

A similar airborne instrument belonging to the Chinese Academy of Science acquired data from the

Changping region, near Beijing, in the fall of 1995. These data sets are currently being analyzed.

J. Miller of York University has also indicated interest in �tting the semiempirical models to airborne

CASI data acquired during BOREAS from stands of old jack pine, with and without a ground cover of snow

(J. Miller, personal communication).

An excellent source of future airborne measurements will be provided by the AirMISR which will be-

gin acquiring data early in 1997. Several of the sites initially scheduled for over
ights will also supply

PARABOLA data thereby generating very interesting BRDF validation data sets. Coordination is under-

way between MODLAND and MISR to schedule several over
ights of the intitial Tier 3 MODIS Biome

Tower sites early in 1998.
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3.3.4.2 Large-Area Application In addition to validation of the ability of the semiempirical models

to describe BRDFs and infer albedos, there is a need to apply the BRDF/Albedo algorithm to MODIS-like

data from large areas to validate the operational aspects of the algorithm. The most suitable data for this

purpose are AVHRR LAC data, since the AVHRR has a view geometry and pixel size in LAC mode similar

to that of MODIS, although the orbital crossing times are somewhat di�erent.

As described in Section 3.3.1, AVHRR LAC data from the east coast of North America are currently

being accumulated by the Geophysics Directorate of the USAF Phillips Laboratory and Atmospheric and

Environmental Research, Inc., in an informal collaboration with Boston University. The primary objective

is to characterize the BRDF of the surface as an aid to cloud detection for use in cloud characterization

algorithms. In addition to providing information on the availability of cloud-free surface observations, the

study will exercise the BRDF/Albedo algorithm over a large region through time. Although there are

no supporting ground truth data for BRDF or albedo for direct validation, we can nonetheless check for

reasonable results. The study will help us both to understand better operational problems and constraints,

and to estimate processing times more accurately.

A similar AVHRR LAC dataset is also being accumulated in China for a 54,000 km2 region incorporating

the area expected to be 
ooded following the completion of the Three Gorges Dam on the Yangtse River.

Data acquisition, which started in early 1995, is supported by the National Science Foundation of China

and the CAS Institute of Remote Sensing Applications under a grant with X. Li as Principal Investigator.

As part of the project, ground truth measurements will be acquired that can be used to test BRDF/Albedo

retrievals directly. Dr. Li is also a member of the SPOT-VEGETATION team, with an approved proposal

to use SPOT-VEGETATION data for environmental surveillance of the Three Gorges Dam region. Thus,

we may be able to use SPOT-VEGETATION data in validation as well (see Section 3.3.4.3).

In yet another AVHRR application, D. Meyer at the EROS Data Center is applying semiempirical models

to AVHRR LAC data for a transitional region in the northern midwest that exhibits a range of vegetation

covers. The study will focus on albedo retrieval and model selection for the various cover types. Some

ground validation data will also be acquired (D. Meyer, personal communication).

GAC data from the AVHRR Path�nder dataset can also serve as a source for testing large-scale appli-

cation of the BRDF/Albedo algorithm. However, this application is limited by the subsampling pattern of

the instrument in GAC mode, as well as by problems of geometric accuracy and atmospheric correction.

Data from the ADEOS borne POLDER instrument is also very useful in validating the BRDF/Albedo

algorithm. Since it acquires successive overlapping images of the ground along the orbital path, it is closer to

MISR in its imaging characteristics than to MODIS. The instrument is discussed in more detail in Section 2.6.

It provides the opportunity to apply the BRDF/Albedo algorithm in an operational context and also allow

some measure of validation with ground truth. This e�ort is supported by X. Li and M. Barnsley, members

of the POLDER Science Team who are also a members of the MODIS BRDF/Albedo team, as well as M.

Leroy, who is heading the POLDER surface re
ectance-BRDF e�ort. Test sites for acquisition of POLDER

data range from La Crau, FIFE and BOREAS sites to the previously mentioned Changping and Yucheng
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sites in China.

3.3.4.3 Postlaunch Validation During the postlaunch validation phase, emphasis will be placed on

comparing the BRDF/Albedo Product with (1) ground data at the Tier 3 and 4 EOS Test Sites; (2) ground

data from Tier 2 sites-of-opportunity in connection with future multidisciplinary �eld experiments (e.g.,

FIFE, BOREAS, LBA); (3) MISR surface re
ectance, BRDF and albedo products; (4) POLDER surface

re
ectance, BRDF and albedo products; and (5) possible BRDF/Albedo products from AVHRR Path�nder.

The MISR instrument is colocated with MODIS on the AM platform and, although the MISR surface

re
ectance data are used in the MODIS BRDF/Albedo Product, the single instrument products can also

serve as a source of validation. The MISR Surface Product depends on the Rahman{Pinty{Verstraete model

(RPV) (Rahman et al.,1993) in a form modi�ed by Martonchik (Englesen et al., 1996) to supply BRDF and

albedo parameters (Diner et al., 1996; Maronchik, 1997). As shown by Wanner (see Appendix B), either

the RPV or the Ambrals models retrieve these parameters with reasonable accuracy. Postlaunch validation

will therefore include a component of comparison to highlight the similarities and di�erences between these

products and address the e�ects of di�erence atmospheric correction schemes, temporal variation and spectral

coverage.

Other satellite-based postlaunch validation opportunities concern the SPOT{VEGETATION instrument

and the meteorological satellites. SPOT{VEGETATION, due for launch several months after the AM

platform, is a wide-�eld, three-band (blue, red, near-infrared) pushbroom instrument with a 1-km spatial

resolution. It di�ers from the AVHRR primarily in its blue band and in the fact that its spatial resolution,

by virtue of the pushbroom design, will be constant in the across-track direction. At this time, the SPOT{

VEGETATION science plan is still under development, and we are not certain which products will be most

useful for validation.

Current and future GOES US geostationary meteorological satellites have improved, onboard, visible

radiometric calibration (not available before GOES-8) and �ner 10-bit (vs. older 8-bit for pre-GOES-8)

radiometric resolution at a nominal 1-km spatial resolution. With these characteristics, spatially coincident

geostationary and polar orbiting data may be helpful in validation of the BRDF/Albedo product. In contrast

to MODIS/MISR, in which view angle and azimuth vary freely while sun position is constrained by latitude

and the platform crossing time, geostationary satellites hold view position constant through the day, while

sun position changes throughout the full diurnal cycle. Given auxiliary data on the atmospheric state

throughout the day covering the MODIS swath, it will be possible to compare the exoatmospheric radiance

directional re
ectance for any given area based on the MODIS/MISR BRDF at a variety of di�erent solar

angles with the exoatmospheric radiance available from GOES. Eventually with MODIS-PM data it may be

possible to improve the accuracy of the BRDF extrapolation to other solar angles (van Leeuwen et al., 1996).

In addition, it may eventually be possible to integrate GOES-derived "at-surface" directional re
ectance to

provide for diurnal cycles of albedo which are required by hydrologists.

Arino et al. (1991, 1992) and Dedieu (1992) provide an approach to validation for AVHRR with ME-
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TEOSAT that may be useful for the BRDF/Albedo product in the postlaunch period. In this method,

geostationary satellite exoatmospheric radiance is predicted using the surface BRDF and the derived atmo-

spheric parameters, assuming a constant atmosphere for the time interval under study. The GOES-Next

series of satellites will be particularly relevant for this purpose, although their spectral bands are much

broader than MODIS. At-satellite radiance is predicted using atmospheric codes such as 6S (Vermote et al.,

1994). If the terrain is suitably rugged (see discussion in Section 3.2.6), the simulation may also need to take

into account mutual illumination e�ects. Monte Carlo ray-tracing (Lewis and Muller, 1992; Muller and Dal-

ton, 1988) can then be used to represent these multiple scattering events. However, the large computational

requirements of ray tracing will probably restrict its use to a few well-de�ned EOS test sites.

Polar orbiting instruments, such as SCARAB and CERES, which will be on multiple platforms, will also

provide the opportunity to validate BRDF/Albedo in the context of the global radiation budget. CERES will

provide shortwave albedo from the same platform as MODIS. However, the coarser resolution of CERES

and the greater likelihood that partial �elds-of-view will be cloud-covered pose some obstacles to direct

comparisons with the CERES albedos with the BRDF/Albedo product.

In addition to these directly sensed measurements, the BRDF/Albedo product can be validated by com-

parisons with existing coarse-resolution global albedo databases. These range from static parameterizations

based on land cover (such as the ISLSCP Initiative I and II products for albedo) to satellite-based obser-

vations in broad and narrow bands by METEOSAT and, in the past, by ERBE (Earth Radiation Budget

Experiment). Li and Garand (1994) enumerate these datasets more fully. For BRDF, the scene- dependent

top-of-atmosphere angular re
ectance models of ERBE (Barkstrom and Smith, 1986; Taylor and Stowe,

1984) are an obvious point of comparison, although the footprint of ERBE radiometers is about 40 km at

nadir. A comparison with these coarse resolution databases will be facilitated by the use of linear semiempir-

ical models of BRDF/Albedo, which can be easily aggregated to coarse resolutions for quantitative overlays

to alternative datasets.

3.3.5 Quality Control and Diagnostics

MODIS standard data products are comprised of science data sets and metadata. The EOSDIS Core System

(ECS) architecture provides for the storage of QA results in both the metadata and in the science data sets.

Mandatory ECS QA 
ags are stored in the core metadata. These mandatory 
ags include QA statistics and

text that summarize the application of runtime or post run time QA procedures. Additional QA information

can be stored by the science team members in the product metadata.

Spatially explicit QA results are stored in the science data sets. MODLAND has developed a QA plan

for these spatially explicit QA results (Roy, 1996). This speci�es two QA science data sets (a mandatory and

an optional) for each distinct data product and at each spatial resolution. The mandatory QA science data

set will include information on cloud state (bits 0-2), overall quality information (bit 3) and crucial product

speci�c QA (bits 4-7). A synopsis of the QA de�nitions will be stored in a text based �eld in the product

metadata. The science team members will determine the content of the crucial QA results. Additional
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product speci�c and spatially explicit QA results can be stored in the optional QA science data set (which

can have any number of bits and any structure and content).

The BRDF/Albedo product envisions a number of quality and consistency 
ags to allow assessment of

the reliability of the data produced (Table 12). Since di�erent applications may require di�erent levels of

accuracy, our approach is to be rather generous in supplying a result and then to indicate by a 
ag whether

a result is less reliable. In this way, each user can decide which data of which quality will be used and which

discarded, instead of this decision being made at the production level.

At present 4 words worth of QA are de�ned for the BRDF/Albedo product. That encompasses one

word of QA for the best BRDF model (lowest RMSE), one for the globally applied BRDF model (modi�ed

Walthall), and two for generally applicable information. Identi�cation of the 4 bits worth of QA information

deemed most crucial (and therefore stored in the mandatory QA science data set) is still being explored at

this time. The remainder of the QA results will be stored in the optional science data set.

Currently part of the �rst two words will include a general quality 
ag for the BRDF model with eight

possible settings summarizing the more detailed quality 
ags that follow. Flags from input products signaling

problematic input may lead to a deterioration of the value of this 
ag. Further 
ags in the �rst two words

indicate whether the BRDF given is newly computed from data, computed with a predetermined model,

computed with a predetermined shape or from a default (probably landcover based) source. Another 
ag

indicates whether the �t was equally good in all wave bands or whether a particular range of bands produced

worse �ts.

Flags in the third word indicate coverage and density of sampling in viewing and illumination hemi-

spheres, allowing the user to roughly assess the zenith angle range utilized and the density and relative

orientation of samples in azimuth. A 
ag indicating whether an atmospheric correction loop was performed

is also included in this word.

Finally, in the last word, information on the e�ects of topography, the compositing period, possible

reasons product might not have been produced, and availability of MISR data is stored.

In summary, the quality of the data delivered will be assessed by analyzing the input data (and its

associated quality 
ags if applicable), by checking the consistency of the result with respect to previous

�ndings for that pixel, and by understanding the sensitivity of particular results to various in
uences.

3.3.6 Exception Handling

Pixels associated with line dropouts, detector failures and the like problem will be eliminated from the

accumulation of data to be gridded and inverted in the production of the BRDF/Albedo product. Pixels

associated with clouds, cloud shadows, cloud adjacency, and water surfaces will also be eliminated. In most

cases these pixels have been 
agged by the surface re
ectance product (MOD09). Regions where insu�cient

values exist to invert the Ambrals models will be supplied or adjusted by a model or shape predetermined

from either the previous product or an ancillary generic BRDF. Information about these decisions will be

conveyed in the QA 
ags.
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Table 12: Version 1 BRDF/Albedo Product Quality Assurance Flags.

Word 1 (Best Fit BRDF) and Word 2 (Globally Applied BRDF)

Bit Flag Key

00{02 Overall Quality 0=not processed 4=acceptable

1=bad 5=fair

2=problematic 6=good

3=unsatisfactory 7=very good

03 Land cover use 0=not used 1=used

04{05 Inversion status 0=new 2=shape predetermined

1=model predetermined 3=default estimate

06{07 Fit over bands 0=even across bands 2=poor in bands 5{7

1=poor in bands 1 or 2 3=others

Word 3 Angular Information

Bit Flag Key

00{01 View Angle Coverage 0=parameter problematic 2=parameter moderate

1=parameter weak 3=parameter good

02{03 Sun Angle Coverage 0=range 0{10� 2=range 20{30�

1=range 10{20� 3=range 30{90�

04{06 Median Sun Angle 0=range 0{10� 4=range 40{50�

1=range 10{20� 5=range 50{60�

2=range 20{30� 6=range 60{70�

3=range 30{40� 7=range 70{90�

07 Atmospheric Correction 0=not iterated 1=iterated

Word 4 General Information

Bit Flag Key

00{01 Topographic E�ects 0=no topographic e�ects 2=some e�ect from varied topography

1=uniform slope 3=strong e�ect from varied topography

02{03 Nonproduction Reason 0=not enough looks 2=ocean

1=inland water 3=bad data or code problem

04 Period Used 0=16 days 1=32 days

05 MISR Availability 0=not used 1=used

06{07 spare
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3.3.7 Data Dependencies

The input data include:

Required data

� Gridded MODIS surface re
ectance data (product MOD09) in the seven MODIS land bands (1{7), in-

cluding information on atmospheric state passed to the BRDF/Albedo algorithm as an internal product

� Gridded MISR surface re
ectance and atmospheric parameters (MISR Level 2 Aerosol/Surface Product)

� Level 2G Footprint Pointers

� Angular Information
Supporting Data

� The MODIS Land Cover Product (MOD12)

� The BRDF/Albedo product from the prior time period

� An ancillary generic BRDF/Albedo database

� Topographic information on within-pixel slope facet angles and orientations from a 100-m resolution DEM

for topographic correction (postlaunch)

� Atmospheric state

3.3.8 Output Products

Table 1 provides a complete description of the BRDF/Albedo product output . The principal features are:

� Best-�tting BRDF model identi�er, with parameter values, RMS error, black-sky albedo function coe�-

cients and white-sky albedo for the model

� Parameters and RMS error for the modi�ed Walthall model

� A comprehensive set of 
ags describing overall quality, band-wise quality, sun and view angle coverage,

and consistency for the best- �tting model.

4 CONSTRAINTS, LIMITATIONS, ASSUMPTIONS

Constraints, limitations and assumptions are largely discussed ad seriatim in the body of this document. A

brief itemization is provided below.

4.0.9 ASSUMPTIONS AND CONSTRAINTS

� MISR/MODIS data are georegistered with su�cient accuracy that BRDF/Albedo calculations are not

signi�cantly a�ected by misregistration

. � The resampling inherent in georegistration of MISR radiances does not signi�cantly a�ect BRDF/Albedo

retrievals.
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� The derivation of atmospheric parameters fromMISR and MODIS is su�ciently accurate that BRDF/Albedo

calculations are not signi�cantly a�ected by their errors.

� The physical parameters controlling BRDF/Albedo remain constant during the production cycle, although
we plan to screen for obvious changes.

� Topographic e�ects on BRDF can be described within the semiempirical model �tted to the pixel (at

launch) or separated from surface cover (postlaunch)

� The Ambrals semiempirical BRDF model kernel are su�ciently complete to describe well the range of

BRDFs and albedos encountered on the earth's land surface.

4.0.10 LIMITATIONS

The BRDF/Albedo product will be made every 16 days for every land pixel. If the set of surface re
ectance

measurements within that period is insu�cient to provide new BRDF and albedo values, a value from an

earlier period or a value based on the ancillary generic data set will be output.
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6 RESPONSE TO ATBD REVIEWS

6.1 1994 REVIEW: Comments and Response

6.1.1 Comments from the Reviewers (June, 1994)

A numerical assessment was made in six categories for each of the individual ATBDs:

1. Degree to which product meets EOS priorities

2. Soundness (feasibility/practicality) of approach

3. Appropriateness of algorithm input

(a) Intermediate Products

(b) Dependence on other AM products

(c) Ancillary data (nonplatform data)

4. Completeness of sensitivity and error budget

5. Soundness of validation strategy

6. Release of useful products at launch

7. Other comments

Each category was given a numerical grade as follows:

Grade 9 | High or strongly agree

Grade 5 | Neutral

Grade 1 | Low

Grade 0 | Insu�cient Information

The BRDF/Albedo product was rated as follows:

1. (Grade 9) Two products wil result from this algorithm (i) the BRDF and (ii) surface albedo. The

latter is obtained by angular and spectral integration of the BRDF. Both products are relevant to the MTPE

programs.

2. (Grade 6) The proposed approach could be enormously complex to implement. It has never been

tried over as large a region as even a single satellite pixel, and therefore is high risk for producing reliable

global products by launch.

3. (Grade 8) (a) With dependence on the AM products as an additional complication, the developers

propose to invert a coupled atmosphere-surface model, obtaining simultaneously the atmospheric and canopy

properties. This renders the problem even more complex and spectral region dependent. Land cover maps

will also be needed. The land cover classes needed to do this will likely be more complex and �ner spatial

resolution than those required by the ecosystem process models. Who will produce these maps? The problem
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would be much less complex were the developers to use atmospherically corrected data. The algorithm will

also need cloud-screened data. (b) As to the appropriateness of intermediate products, it is not clear

that there will be any EOS algorithms that utilize the BRDF data directly without further synthesis into

products such as albedo. There is no question however, that BRDF data would be enormously useful for

many computations and investigations. (c) As for the need for ancillary data, topographic data will be

critical to the model inversion problem as well as meteorological data to analyze canopy status to initialize

the BRDF inversions. Other data such as soils maps, global land cover maps etc. would be needed.

4. (Grade 0) No error modeling or sensitivity analysis is presented.

5. (Grade 0) No validation strategy is presented.

6. (Grade 1{5) Given the immaturity of the this algorithm, the probability of BRDF data generated at

1km globally is very unlikely. Even with an algorithm, it is not clear how many orbits will be required to

build up the requisite cloud{free views to develop a reliable BRDF. Thus, the BRDF product will likely be

one where the holes are slowly �lled in.

7. (Comments) It is not obvious how the complete BRDF can be constructed from MISR. Much of the

variability and asymmetry occurs near the principal plane for which even the scan{plane of MODIS will

not come close in certain seasons. It is also not clear given cloud cover probabilities in most vegetated

regions, how long it will take to acquire enough data to build the BRDF. Multiple acquisitions at several

di�erent relative azimuths may be required for some vegetation types. In addition, the implementation of

the approach has not been thought out in detail and will present many practical problems when attempting

to implement it on a global scale. The largest practical problem is that no universal canopy re
ectance

model exists that can handle the range of canopies to be encountered on a global scale. To circumvent

this problem, the developers propose several di�erent models, to be selected to address the complexity of

di�erent ecosystems. Thus a logic will need to be worked out, with objective criteria speci�ed, for selecting

which model to use for what pixel. This selection criteria might also need to select di�erent models for

di�erent MODIS bands since models for bands where multiple scattering is not important might not work

for bands for which multiple scattering dominates. This will require a front end to the algorithm to generate

the input parameters to the criteria.

It is not made clear how the MODIS and MISR data will be combined to produce the BRDF since

di�erent bands and spatial resolutions are involved. The developers propose to produce a BRDF for each

1 km. This will potentially present a large processing load, and in fact may be unnecessary where large

portions of an ecosystem might be rather homogeneous over several kilometers. The approach does not rely

on direct observation of BRDF, rather it infers it from inversion of re
ectance models to obtain surface

parameters, but very little, if any work has been done using the extracted parameters to construct a BRDF

for the purpose of computing surface albedo.
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6.1.2 Algorithm Changes in Response to the 1994 Review

Here is a summary of the major changes in the algorithm:

G1. Use of semiempirical models.

BRDF is now �tted using a suite of simple, linear, semiempirical models. In e�ect, these models �t the

angular pattern of observed bidirectional re
ectance measurements using a mixture of simple, contrasting

BRDF shapes that are derived by simplifying more complex physical BRDF models. That is,

R = fiso + fgeokgeo + fvolkvol (41)

where R is the BRDF as a function of illumination zenith, view zenith, and relative azimuth; kgeo and kvol

are two shape functions that depend only on illumination zenith, view zenith, and relative azimuth; fgeo

and fvol are weights that mix the two BRDF shapes; and fiso is a constant, corresponding to isotropic

(Lambertian) BRDF shape.

The shape function kgeo is derived from BRDF theory for surfaces dominated by geometric-optical shad-

owing e�ects. There are currently three choices for this function, derived from the theory of (1) rectangular

projections on a plane; (2) sparse spheroidal projections on a plane; and (3) dense spheroidal projections

on a plane. The shape function kvol is derived from theory describing the volume scattering of leaves in

a homogeneous layer. Two choices are currently available for this shape function, derived from theory for

(1) thin, and (2) thick, leaf layers. A third volume-scattering shape function, derived from the theory of

volume scattering of snow, is under development. We also �t the Walthall model for BRDF, which is of a

mathematical form similar to that above, but relies on empirical functions rather than BRDF shapes derived

from physical models.

G2. Inversion speed.

The algorithm now runs very quickly. Fitting a single semiempirical model requires only inversion of

a 3 by 3 matrix. This allows us to �t multiple combinations of models and choose the one with the best

�t. Realistic timings of the algorithm in execution now fall easily within instrument and product resource

allocations.

G3. 16-day cycle instead of 9-day.

Following preliminary studies of cloud cover, we now plan to provide the product on a 16-day cycle,

instead of a 9-day cycle. (Sixteen days is the repeat cycle for double MISR coverage { that is, the 16-day

cycle provides at least two possible MISR acquisitions at all latitudes.)

G4. Atmospheric coupling.

The coupling between the atmosphere and surface is accomplished by an iterative loop in which a prior
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(or Lambertian) BRDF is used to extract surface bidirectional re
ectances given their atmospheric state;

a provisional BRDF is �tted; surface bidirectional re
ectances are reextracted; and the next BRDF is

calculated. Only one or two loops are needed in nearly all cases to convergence within a few percent. The

atmospheric correction logic is that of the MODIS surface re
ectance product (Vermote), similar to that

used in the 6S program. The looping logic follows MISR=D5s approach.

G5. Spatial resolution.

The product is still produced at 1-km resolution (now 1.1 km resolution on the ISSCP Level 3 grid). This

�ne resolution is needed for input to the surface re
ectance product, which produces output at (nominal)

250- and 500-m resolutions and requires the BRDF for accurate calculation. However, the linear nature of

the semiempirical models allows easy extrapolation of both BRDF and albedo measures to coarse resolutions.

In this way, the needs of both global climate modelers and regional climate-surface energy balance modelers

for albedo and BRDF data can easily be accommodated.

6.1.3 Speci�c Responses to the Panel's Comments

P1. Complexity.

The panel notes that the approach described in the old ATBD could be enormously complex to implement

and has never been tried over a region of any size. However, the revised algorithm using semiempirical

models is enormously simpler. Computational tests show that it can be applied globally at reasonable levels

of processing power. We have also applied several semiempirical models (although not the full suite yet)

to ASAS imagery on a pixel-by-pixel basis. We will shortly apply the full algorithm to a registered LAC

dataset of New England. Both of these applications are discussed in more detail in the new ATBD.

P2. Atmospheric Correction.

The panel noted that inverting a coupled atmosphere-surface model produces an added complication.

The new algorithm couples surface and atmosphere in a simple loop that requires one or two iterations. (See

G4. above.)

P3. Error modeling and sensitivity analysis.

The panel notes that no error modeling or sensitivity analysis is presented. The new ATBD provides

such analyses.

P4. Validation.

The panel observes that no validation strategy is presented. The new ATBD provides an extensive

discussion of validation.
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P5. Scan geometry for MODIS and MISR.

The panel expressed the concern that between MODIS and MISR, insu�cient observations may be

acquired along the principal plane, where much variability and asymmetry in the BRDF occurs. The

acquisition of observations along the principal plane is a complex function of orbit, sensor geometry, latitude,

and time of the year. Because MISR acquires data in the along-track direction and MODIS in the across-

track direction, there is normally good coverage of the view hemisphere, with observations from one or the

other instrument near the principal plane. The subject is treated in more detail in our recently published

paper (Barnsley et al., 1994) and in the new ATBD. Note that the use of semiempirical models, in which

the BRDF shapes are physically-based, mitigates this problem. Since the BRDF shape is restricted by the

physics and is not allowed to vary freely, principal plane measurements are less important.

P6. Cloud cover.

The panel pointed out that, given cloud cover, it is not clear how long it will take to acquire enough

observations to �t a BRDF. We are investigating the cloud cover problem, and as a result of studies described

in the new ATBD, we have changed the product cycle from 9-day to 16-day. (See G3. above.)

P7. Model selection.

The prior algorithm relied on a selection process to choose an appropriate physical BRDF model to invert

on a pixel-by-pixel basis. The panel was concerned that this process was not su�ciently well thought- out

or speci�ed. The new algorithm eliminates this selection process.

P8. Data combination.

The panel pointed out that the issue of combining MISR and MODIS data with varying spatial and

spectral resolutions was not well speci�ed in the ATBD. This has been remedied in the new document.

P9. 1-km resolution.

The panel was concerned that the 1-km spatial resolution presented a large processing load, and that for

at least some regions, large portions of an ecosystem might be rather homogeneous over several kilometers.

With the speed of the new algorithm, the processing load is no longer a problem. Although there may

be some large, homogeneous regions with unchanging BRDF, there will certainly be other regions where

�ne-grained land surface variation will require �ne resolution of the BRDF and albedo. Note also that

for accurate results, the surface re
ectance algorithm (Vermote) requires BRDF at as �ne a resolution as

practical.

P10. Albedo from BRDF.

The panel comments that little, if any, work has been done on the construction of a BRDF for the purpose

of computing a surface albedo. Actually, there is long history of this for TOA BRDFs in the asymmetry
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factors of Taylor and Stowe (1984) for ERB and follow-on work (e.g., Baldwin and Coakley, 1991; Green and

Smith, 1991). For surface measurement, a number of recent papers have used BRDF functions in relating

directional measurements to albedo (e.g., Ranson et al., 1991; Starks et al., 1991). So some work of this

nature has been done, and more is likely to be on the way. Combining bidirectional measurements through

the mechanism of a BRDF is really the only way to measure the albedo of a small patch of land surface

directly from space. Other approaches (e.g., Sellers et al., 1994) require even more modeling.

P11. Land cover information.

The panel notes that �ne-grained land cover information is needed for the model-selection procedure

(see 3. above) and that appropriate data might not be available. Land cover information is not used for

model selection operationally in the new algorithm, although it may be used to "prime the pump" at time

zero. Land cover information will be available at launch, probably as the IGBP 1-km Land Cover Database

derived from the global 1-km AVHRR NDVI composite now being processed at EDC (see Land Cover

Product ATBD).

P12. Use by other EOS algorithms.

The panel remarks that it is not clear that there are any EOS algorithms that utilize the BRDF data

directly. However, MODIS surface re
ectance uses BRDF directly. This is because the errors induced by

assuming isotropic surface re
ectance can be as large as 15 percent for turbid cases (discussed in new version

of ATBD). Calculations by Lee and Kaufman documented this back in 1986. We are presently working with

Eric Vermote to integrate the BRDF and surface re
ectance algorithms together into a single processing

chain.

P13. Ancillary data.

The panel remarks that extensive ancillary data (topographic, soils, meteorological) are needed. However,

these were for the model selection procedure that is now eliminated.

6.1.4 Speci�c Responses to the Mail Reviewers' Comments

For the mail reviewers, many speci�c comments are obviated by the changes in the both the algorithm and

document. Thus, the responses below are directed to the more general concerns that they express.

Ross-Nilson-Kuusk

R1. Choice of re
ectance models is problematic.

This review commented that other physical models should be explored. However, our product no longer

uses physical models{just semiempirical models. The review also expressed some concern about the vali-

dation of the Liang-Strahler model against radiative transfer calculations. Again, this model is no longer
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used. The model selection issue, commented on in P7. above, was also raised. Use of semiempirical models

obviates the problem.

R2. Atmospheric coupling.

These reviewers suggest that atmospheric coupling is important and needed to be developed in more

detail in the document. This has been done.

R3. Albedo calculation.

The review requested better development of the procedure for calculating albedo from integrating the

BRDF, noting problems with atmospheric e�ects and pixel sizes at large view zenith angles. Both of these

issues are now addressed in the new ATBD.

R4. Multisensor, multichannel data needed.

The review noted that retrieval of physical parameters from inversion of physical models can be prob-

lemmatic and that additional multisensor, multichannel data may be required to provide good accuracy.

However, the algorithm no longer inverts physical models to infer physical parameters.

Borel-Gerstl

B1. Mixed pixels.

These reviewers point out that MODIS-sized pixels will contain mixtures of cover types, and individual

physical models may not �t them well. Further, there were cover types that were not �tted well by any of the

physical models we had selected, such as snow, standing water, etc. In the new algorithm, the semiempirical

models handle mixtures easily and should be able to accommodate these other cover types without di�culty.

B2. Inversion issues.

The reviewers express concerns about numerical inversion procedures (no longer required); the processing

power needed for global calculations (not a problem for the semiempirical models, see G2. above); e�ects of

noise on inversion (new sensitivity studies in ATBD show good results); computational costs of numerical

integration of BRDFs to give albedo measures (now trivial due to �xed kernels with variable weights and a

linear model); and that maps of BRDF parameters from multiangular data have never been produced (now

included in the new ATBD).

B3. Global use of Walthall model.

The reviewers suggest we consider use of a few simpler models, and suggest the Walthall et al. (1985)

model as a candidate. We have, in e�ect, taken their advice by using the semiempirical models.
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B4. MODIS-MISR data combination issues.

The reviewers note that the issues of merging MISR and MODIS data are not well addressed in the

document. The issues include not only geometry but also the fact that sun angle and atmospheric condition

will vary with each MODIS image. A new section in the revised ATBD handles the data merging issue,

and the atmospheric correction procedure accepts the fact that the atmosphere is di�erent for each MODIS

observation. See also P5. above.

B5. Research issues.

The reviewers list several issues that require more study: (1) the number of observations needed to derive

the BRDF of a pixel (10 is our cuto�, but sensitivity studies have not been done yet); (2) the sensitivity

of the retrieved parameters to errors introduced by noise and errors in atmospheric correction (some noise

studies are complete and in the new ATBD, others are planned); (3) the e�ects of registration errors on

BRDF parameter extraction for heterogeneous surfaces (studies are planned); and (4) the allowable interval

in which can we consider the BRDF of a vegetation cover to be constant (16 days, we hope, with studies

planned for spring/fall AVHRR data to see how quickly BRDF/Albedo changes).

Meyer Review

M1. Land cover dependence.

This reviewer notes that in our prior algorithm, land cover information was used in model selection,

raising issues of updating of land cover information in the face of land cover change on a three-month

time scale, while BRDF/Albedo was observed much more frequently. However, model selection is no longer

necessary, obviating the need for land cover for this purpose.

M2. Sensitivity to atmospheric in
uences.

More sensitivity studies detailing the e�ect of atmospheric correction errors on model parameter retrieval

need to be done, according to the reviewer. We agree, and plan such studies.

M3. Sensitivity to geometric and radiometric errors.

Angular, geolocational and spectroradiometric errors need to be investigated systematically in the context

of merging MODIS and MISR data. We agree, and plan such studies.

Verstraete Review

Note that this review is exceedingly lengthy (14.5 pages of 10-point type), and that most of the detailed

comments related to the speci�c text by page and paragraph. Since the text has been entirely rewritten,

these no longer apply. The response here is directed toward the overall evaluation paragraphs that begin
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the review.

V1. Algorithms are not suitable for operational products.

The reviewer is concerned that the proposed algorithms are under development and mostly suitable for

academic research. However, with the new semiempirical model approach, we believe we have now developed

algorithms suitable for operational products. (See G2 above.)

V2. Per-pixel BRDF is unrealistic and of low interest.

The reviewer expresses the concern that the computer resources needed for per-pixel determination are

large and that there is not much scienti�c interest in the results. However, the semiempirical model algorithm

now runs well within the resources available for the MODIS instrument and AM platform. (Timings are

documented in the new ATBD.) As for scienti�c interest, the panel review states, "There is no question...

that BRDF data would be enormously useful for many computations and investigations." Note also that to

deliver surface re
ectance accurately from MODIS, BRDF is required.

V3. Albedo needs a clearer de�nition.

The new ATBD clearly speci�es the albedo measures we provide in de�nitions traceable from Nicodemus'

classic NBS monograph.

V4. De�ciencies in science, numerical analysis.

The reviewer o�ers the opinion that various parts of the algorithm su�er from de�ciencies in science

and numerical analysis. However, the semiempirical approach we have now selected for the product is fully

grounded in the science of BRDF modeling as it has developed over the past decade or so. Numerical

inversion is no longer necessary, thus obviating this concern.

V5. Prerequisite datasets.

The reviewer notes that the algorithm was dependent on collateral datasets for model selection that were

not well speci�ed. As noted before, the new algorithm operates independently and these datasets are no

longer required.

V6. Relative contributions of MODIS and MISR to the data pool.

The reviewer expresses the concern that since the product will only be produced when MISR data are

available, the contribution of MODIS to the data pool will be minor. (1) The new algorithm will not be

limited to pixels for which MISR data are available, and will provide a product for every pixel every 16

days. If there are insu�cient observations to update the BRDF and albedo, we will reach back to the prior

product or use a stock BRDF/Albedo based on prior experience and past history with the pixel. Flags will

inform the user in these cases. (2) For accurate BRDF retrieval, both MISR and MODIS data are needed,
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because the two instruments sample the viewing hemisphere from di�erent directions. The contribution of

MODIS is no less important than that of MISR. See P5. above. The exact mixture of MODIS and MISR

observations for a pixel during a time period will be a function of cloud cover during the period.

V7. More detail is needed on issues of scale, spectral bands, accuracy, coregistration, the e�ect of clouds on

data availability, and computations of albedo in SWIR bands.

We agree that these topics all need more work. Of these issues, we have concentrated on accuracy and

cloud impacts, and our results are provided in the revised document. Future studies are planned to address

all of these areas more fully.

V8. Albedo and BRDF are part of the same product, even though the user communities may be di�erent.

The reviewer observes that the user communities and requirements for albedo may be quite di�erent from

those of BRDF, and that alternative strategies for global albedo products should be considered and discussed.

Albedo is a product that is consumed on a number of scales. Needs can range from coarse resolution (e.g.,

1-degree) values that change in the spring and fall for global climate modeling to �ne- resolution data that

is directly ingestible by regional climate and surface energy balance models operating at �ner time scales.

At coarse resolution, there are a number of approaches, well summarized by Li and Garand (1994), ranging

from table lookup based on land cover to derivation of TOA albedo from such data sources as ERBE sensors

and correction of that TOA albedo to surface albedo through empirical corrections derived from radiative

transfer simulations. Whatever the approach, all satellite applications must overcome problems of clear

scene identi�cation, spectral and angular corrections, and the removal of atmospheric e�ects. MODIS and

MISR, by virtue of their �ne resolution yet global coverage, are more suited to provide �ne resolution albedo

products. At the �ne resolution, we see no viable alternative to extracting albedos through the mechanism

of the BRDF (see P10. above), given the spatial and temporal variability of the earth's surface at the 1-km,

biweekly time scale. Had the reviewer been more speci�c, we might be able to respond more speci�cally.

V9. Physical models are home-grown.

The reviewer notes that the physical BRDF models selected rely largely on the work of authors, and a

more open policy of model selection is desirable. Although the set of physical models in the prior algorithm

focused largely on those developed with MODIS support for the MODIS/MISR application, the semiempiri-

cal models draw more broadly on the work of the BRDF community. Models of Roujean (1992), Ross (1981),

and Walthall et al. (1985) as modi�ed by Nilson and Kuusk (1989) are integrated into the algorithm, and

the forward-scattering kernel of Sancer (1969) as used by Choudhury and Chang (1981) will soon be added.

The suite of semiempirical models we have developed has been requested by, and provided to, a number of

key researchers in the �eld, including Roujean, Meyer, Ross, and J. Miller, who are assessing its application.

It is also being tested by colleagues C. Zhu and Q. Zhu in China.



6.1 1994 REVIEW: Comments and Response 85

6.1.5 Literature Cited

Baldwin, D. G. and J. A. Coakley, Jr., 1991, Consistency of Earth Radiation Budget Experiment bidirectional

models and the observed anisotropy of re
ected sunlight, J. Geophys. Res. 96:5195-5207.

Barnsley, M. J., A. H. Strahler, K. P. Morris, and J.-P. Muller, 1994, Sampling the surface bidirectional

re
ectance distribution function (BRDF): Evaluation of current and future satellite sensors, Remote Sens.

Rev. 8:271-311.

Choudhury, B. J. and A. T. C. Chang, 1981, On the angular variation of solar re
ectance of snow, J.

Geophys. Res. 86:465-472.

Green, R. N. and G. L. Smith, 1991, Shortwave shape factor inversion of Earth Radiation Budget

observations, J. Atmos. Sci. 48:390-402.

Lee, T., and Y. J. Kaufman, 1986, The e�ect of surface nonlambertianity on remote sensing, IEEE Trans.

Geosci. Remote Sens., GE24:699-708.

Li, Z., and L. Garand, 1994, Estimation of surface albedo from space: A parameterization for global

application, J. Geophys. Res. 99:8335-8350.

Nilson, T. and A. Kuusk, 1989, A re
ectance model for the homogeneous plant canopy and its inversion,

Remote Sens. Environ., 27:157-167.

Ranson, K. J., J. R. Irons and C. S. T. Daughtry, 1991, Surface albedo from bidirectional re
ectance,

Remote Sens. Environ. 35:201-211.

Ross, J. K., 1981, The Radiation Regime and Architecture of Plant Stands, The Hague: Dr W. Junk.

Roujean, J. L., Latoy, M., and Deschamps, P. Y., 1992, A bidirectional re
ectance model of the earth's

surface for the correction of remote sensing data, J. Geophys. Res. 97:20455-20468.

Sancer, M. L., 1969, Shadow-corrected electromagnetic scattering from a randomly rough surface, IEEE

Trans. Ant. Prop. AP-17:577-585.

Sellers, P. J., C. J. Tucker, G. J. Collatz, S. O. Los, C. O. Justice, D. A. Dazlich and D. A. Randall,

1994, A global 1-degree by 1-degree NDVI data set for climate studies. Part 2: The generation of global

�elds of terrestrial biophysical parameters from the NDVI, Int. J. Remote Sens., in press.

Starks, P. J., J. M. Norman, B. L. Blad, E. A. Walter-Shea, and C. L. Walthall, 1991, Estimation

of shortwave hemispherical re
ectance (albedo) from bidirectionally re
ected radiance data, Remote Sens.

Environ. 38-123-134.

Taylor, V. R. and L. L. Stowe, 1984, Re
ectance characteristics of uniform Earth and could surfaces

serived from NIMBUS-7 ERB, J. Geophys. Res. 89:4987-4996.

Walthall, C. L., J. M. Norman, J. M. Welles, G. Campbell and B. L. Blad, 1985, Simple equation to

approximate the bidirectional re
ectance from vegetation canopies and bare soil surfaces, Appl. Optics

24:383-387.



86 6 RESPONSE TO ATBD REVIEWS

6.2 1996 EOS LAND REVIEW: Comments and Response

6.2.1 Comments from the Reviewers (Sept, 1996)

A numerical assessment was made in four categories of evaluation criteria and near{ and long{term recom-

mendations were prepared for each of the individual land products:

1. Technical/soundness of algorithm/approach

2. Value of data product to the Land science community

3. Soundness of the validation strategy

4. Extent to which the 1994 ATBD Review issues have been addressed

5. Near{term recommendations for improvements to the data product

6. Long{term recommendations for improvements or additions to the data product

In addition, the reviewers were asked to evaluate the balance of AM-1 Land Data Products and decide

whether they met the needs of the Land science community.

1. Extent to which the ATBD addressed the compatibility of this data product with other instruments data

products and the needs of the community

2. Assessment of plans for the comparison or enhancement of similar data products from other instruments.

3. Recommendations to improve the balance of land data products

Each category was given a numerical grade as follows:

Grade 9 | Excellent, strongly agree or high

Grade 5 | Average, neutral, medium

Grade 1 | Poor/needs work, disagree, or low

N/A | Not applicable
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The BRDF/Albedo product was rated as follows:

Product

a. (Grade 5) The basic approach chosen by the team reduces to a sophisticated non{linear regression

analysis | �tting a non{linear function to 6-10 points. They chose this simple approach to make it only

observation{based, robust, rapid and scaleable. There are a few concerns/questions that arise based on the

ATBD documentation provided:

1. The kernels assume that BRDF depends only on the relative azimuth angle between sun and view

directions. This assumes azimuthally isotropic vegetation, an assumption not applicable to row crops

or orchards; a caveat that should be noted in the ATBD.

2. The �t and the values of weights will depend upon the data points, especially if the scene is heteroge-

neous. For example, if one deletes a few of the observations,(e. g., hot spot direction, viewing parallel

to the row direction etc.) the �t may be better. Likewise, addition of some observations may make

the �t worse. In other works, the calculated surface re
ectance for a given scene/target may depend

on what data points are chosen, not a desirable situation.

3. RMS error is not the most desirable measure. For example, a calculated re
ectance of 0.60 vs. measured

re
ectance of 0.55 will contribute 0.0025 to RMS error, same as calculated re
ectance of 0.08 and

measured re
ectance of 0.03, although in the latter case the �t is extremely poor. The team should

consider using percentage (or fractional) RMS error or another alternative measure. (It is noted that

the team has been investigating the �tting stability as a function of di�erent scenarios of data sampling

with MISR or MODIS, as has been reported at the IGARSS'96 meeting. These results shold be very

helpful in addressing the above concerns and need to be documented in the ATBD).

4. If the derived BRDF is used to estimate biophysical parameters, it is likely that the estimation of

the structural parameters will be inaccurate because of the smoothing e�ect of the �tting procedure.

Consideration might be given to giving more weight to near{nadir observations in biophysical retrievals.

5. Is there a linear relationship between the weights as calculated for say 256 1km by 1km pixels and one

16km by 16km pixel: If not, the whole approach (which combines MODIS and MISR data at di�erent

resolution levels) is 
awed. Scaleability needs to be studied.

6. A 16 day product was chosen to ensure enough cloud{free re
ectance data for �tting. For certain

cases, vegetation will signi�cantly change in such a period. Another big concern (based on some work

with AVHRR) is that there will not be enough good observations to �t a function. This will almost

certainly be true at latitudes north of 45� over land in summer. What will the algorithm do then?

With a rapid seasonal change it may not be feasible to extend the permissible period.
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7. The surface re
ectance calculated used a particular atmospheric scattering mode. Will the calculated

BRDF represent the right boundary condition for another atmospheric scattering model?

8. MISR data are not available for wavelengths used in MODIS bands 5{7. The model selection is done

using MODIS/MISR data in Bands 1{4. Thus it is assumed that BRDF shape in Bands 5-7 follows

the general shape in Bands 1{4. Is this a justi�able assumption?

b. (Grade 5) BRDF and albedo are useful for biophysical and climate modeling, angle correction of land sur-

face re
ectances, a lower boundary condition for atmospheric radiative transfer, and surface energy balance

calculations. For example, the landcover product needs equivalent nadir re
ectances, and the hydrological

(climate) modeling community needs monthly albedo data at 10 (50) km spacing . Many of the atmospheric

correction models assume a Lambertian earth to get surface re
ectance and radiance and knowledge of the

earth BRDF will improve corrections.

However, the quality of the product, especially BRDF, may not be good for certain purposes. See com-

ments under technical/scienti�c soundness.

c. (Grade 5) The validation approach consists of �tting the semi{empirical model to a wide range of �eld{

measured BRDF sets (from literature), aircraft{measured data (ASAS, POLDER, CASI), laboratory data

and simulated data. The team also plans to do large scalestudies.

Since the general model has many parameters, one would expect that the model will �t to the observed

data (PARABOLA or ASAS). What is important is what happens to the �tted parametres if the data poinst

are changed and some of the points have measurement erros. If the �tting approach is not \stable", the

validity of the whole approach is questionable. However, see the comments above regarding the �tting tests

being reported by the team at the recent IGARSS'96 meeting.

d. (Grade 7) Before the 1994 ATBD review, the team were planning to use physical BRDF modeling and the

reviewers raised several concerns about the physical approach, included the operational feasibility, need of

ancillary data, adequacy of the angular data. In response to the comments, the team has completely changed

the approach to the present semiemipirical approach. The physical approach has its attractive features. The

panel urges a longer{term EOS strahtegy that adopts the semi{empirical approach for an at-launch product

but is open to a new initiative for an advanced post-launch product based on physical{modeling research

program.

e. Near{term recommendations.

� Systematically evaluate the �tting process as a function of number of observations and the solar/viewing
directions of the observations. These \observations" could be generated by a canopy re
ectance model or

from an instrument (e. g. PARABOLA). This study should be carried out for heterogeneous canopies.

� Determine how sensitive the product is to the choice of a di�erent atmospheric scattering model, such
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as those used by the ASTER or MISR teams. A collaboration with the atmospheric scattering modeler(s)

who may use the product whould be mutually bene�cial.

� Determine the usefulness of the product in biophysical parameter estimation by carrying out the in-

versions for known vegetation canopies.

f. Long{term recommendations.

� Investigate the possibility of developing an approach which has a proper balance between physical and

empirical modeling, which uses vegetation classi�cation to minimize the complexity.

Balance

a. (Grade 5) BRDF and albedo are very useful for biophysical and climate modeling, angle correction of land

surfaces, and surface energy balance calculations. A knowledge of earth BRDF will improve the accuracy

of ASTER based atmospheric correction to get surface properties. BRDF is also the basis for higher level

biophysical products. Consequently, the quality of the BRDF product is especially important.

b. (Grade 5) On the basis of oral comments, it appears that the team will work with team members from

other instruments, especially MISR. It also appears that the team will use simulated data from MISR and

vice-versa to improve on the product and enhance the data{formate compatibility and explore the comple-

mentarity of MODIS in a synergistic way to improve the accuracy of various surface re
ectance products.

c. (Recommendations for change) See comments above.

6.2.2 Speci�c Responses to the Land Review Panel's Comments (Section 5.2.6a of the EOS-

AM-1 Land Data Product Review Report)

Prepared by Alan Strahler, Wolfgang Wanner and Crystal Barker Schaaf

We would like to thank the SWAMP Review Panel for a very thorough and constructive review. The

members of the panel not only brought a great deal of their own understanding and experience to the

review, but also clearly spent a lot of time in a careful examination of our speci�c algorithm. We very much

appreciate their e�orts.

The purpose of this document is to respond speci�cally to queries and concerns called out in the review

report, keying them especially to version 4.0 of the BRDF/Albedo ATBD.
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Product

(a) Technical/Scienti�c Soundness

1. The panel notes that the BRDF models used depend only on relative, not absolute, azimuth. This

implies an azimuthally isotropic surface, an assumption that would not be true for row crops or

orchards. The panel requests that this caveat be noted in the ATBD.

We acknowledge that the semiempirical and empirical models that we use make this assumption.

However, our opinion is that the di�erences between a 3-angle BRDF and a 4-angle one �tted to the

same surface are probably not large for most practical cases. Clearly the regular shadowing pattern

of row canopies will show some di�erences from random ones that are implied in most models, but

the di�erences are likely to be signi�cant only for a few view and illumination angles. Some further

studies using row crop re
ectance models (e.g., those of Goel et al.), might be useful to con�rm these

opinions. In any event, we have noted this caveat in the revised ATBD.

2. The panel expresses the concern that the calculated surface re
ectance function for a given scene or

target may be overly dependent on the speci�c data points chosen, noting that removal of points could

lead to better �ts, and addition of points could lead to worse �ts.

A great deal of e�ort has gone in to exploring the dependencies of retrieved BRDF and albedo on noise

and variation in angular sampling with latitude and time of year. Our Appendixes B and C address

these topics in some detail; section 3.3.2 summarizes these results. In short, we have good evidence

that we will retrieve albedos with accuracies around 5 percent and bidirectional re
ectances in the

5{10 percent range.

3. The panel brings up the problem of relative versus absolute error in measuring the RMSE of a particular

model �t, suggesting that relative error be considered.

This topic has been the subject of much debate within our research group and within others faced

with the same problem. (Verstraete, Pinty and Martonchik for MISR, and Roujean for POLDER, for

example.) The issue is valid at within-band and across-band levels.

Within a single spectral band, minimizing absolute error will constrain the BRDF to follow the larger

values more closely. This strategy is particularly suited to reducing the error in albedo estimation,

where integration of the BRDF is required. On the other hand, minimizing relative error will cause the

function to �t smaller observed values more closely, thereby following the BRDF shape more closely.

We use absolute error to favor the accuracy of albedo, since we believe the albedo will be used more

often and more directly, at least at �rst, by EOS investigators. Absolute error is also used in the

MISR and POLDER algorithms for the same reason. Note, however, that Appendix A, Figures 2 and

3, and Appendix B, Figure 3, show that �ts using absolute error still match data (Appendix A) and

alternative models (Appendix ) quite well.



6.2 1996 EOS LAND REVIEW: Comments and Response 91

At the across-band level, our algorithm chooses among the possible kernel models by selecting that

model that �ts best across the four VNIR bands of MODIS and MISR. That is, each band votes for

each structural model, with its vote proportional to the absolute RMSE associated with the model in

that band. The winning model is then used for all bands, with di�erent f -values calculated for each

band.

An alternative would be to weight the vote of each band by the proportion of shortwave downwelling

solar irradiance associated with the band. This would again favor albedo. However, since it is the

structural scattering mechanism that is being selected, we allow each band to be equally weighted.

That could change in the postlaunch era if albedo retrievals are to be further emphasized. Note that

all BRDF models are capable of producing a full BRDF with the usual features | e.g., bowl-shape

and hotspot | depending on the f -values associated with each kernel.

In short, the issue of relative versus absolute error is not easy to resolve. Our choice is to favor albedo,

while making sure that BRDF �ts are still reasonable.

4. We are puzzled by comment (4), which states, \If the derived BRDF is used to estimate biophysical

parameters, it is very likely that the estimation of the structural parameters will be inaccurate because

of the smoothing e�ect of the �tting procedure. Consideration might be given to giving more weight

to near-nadir observations in biophysical retrievals." We are not sure to which structural parameters

the panel is referring, but it is well-established in the literature that the primary source of structural

information is directional, and thus near-nadir observations are not any more important a priori than

o�-nadir observations. In fact, they may be less important.

If this comment applies to the idea that a real nadir-view image may have more information than a

nadir-view image reconstructed from the BRDF, perhaps this is true. However, Appendix A, Figure

6, provides a comparison of real and reconstructed nadir images, and it is obvious that they are very

similar.

5. The panel draws attention to the scalability and linear relationship of model weights with coarsening

resolution, remarking that if the relationship is not linear, then our approach is 
awed.

The semiempirical models we use in Ambrals stem directly from Roujean's original model, which was

developed speci�cally to address the scalability problem using a top-down approach. Theory shows

that as long as a mixed pixel is composed of a number of discrete patches of di�erent surface types,

then the BRDF of the mixed pixel will be a linear function of the individual BRDFs weighted by

their proportional areas. However, when the surface types are more intimately intermixed, they will

interact by multiple scattering. At the �nest scale of mixing, we have a surface type that is modeled

as a composite of intermixed scattering elements, such as the plant crowns of the Li kernels. Thus,

the problem would seem to be only for �ner (but not �nest) scales of mixing, on the order of patches

of changing vegetation covers on the size of perhaps 5{10 meters.
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Appendix F provides some preliminary results of scaling studies for HAPEX-Sahel, in which Ambrals

models are �tted to ASAS data at increasingly coarse resolutions. These results show that model

selection is variable at resolutions of 3 to 30 meters. If signi�cant nonlinearities are present, we would

expect the model choice to continue to be unstable as BRDF shape changes with aggregation. However,

the data show that beyond 30 meters, the choice of model is quite stable, indicating a linear scaling

behavior.

The problem of scaling is also an important one for validation. We will need to scale up BRDF

measurements from individual plots with �eld instruments to kilometer-sized pixels from spaceborne

instruments by bridging the gap with aircraft data, such as that acquired by AirMISR. These studies

will also validate the scalability of the semiempirical model approach. Section 3.3.4 addresses validation

issues and plans in more detail.

6. The panel notes that cloud cover may restrict the number of available observations in a 16-day period

su�ciently that a BRDF cannot be �tted and wonders what provision is made for that case.

Cloud cover is discussed in more detail in Section 3.3.1. The e�ect of loss of data due to random

clouds is simulated in Appendix B, Table 3, which shows the errors in estimation of albedo and nadir

re
ectance with data points randomly removed to simulate the e�ect of cloud cover on retrievals. The

data summarize all latitudes, all biome types, and all solar zenith angles for a 16-day period at the

equinox. Even with 75 percent of the observations removed, median retrieval accuracies remain about

the same. Even the variance in accuracies holds constant.

At present, the algorithm requires 8 looks for an inversion. Section 3.2.1.4 describes the procedure

used when fewer than eight observations are available. In such cases, a model and kernel weights are

selected from a database of accumulated knowledge about the grid cell and its general land cover type.

In the �tting, the shape of the BRDF is preserved, but the overall height is adjusted to �t the available

data. (This amounts to �tting only the isotropic weight f
0
.) If no data at all are available, the prior

or database-indexed BRDF is supplied. In either case, 
ags are set to indicate the procedure and the

quality of the retrival is downgraded.

7. The panel raises the question of the interaction between the scattering model used in atmospheric

correction and the BRDF retrieval, noting that among MODIS, MISR and ASTER, three di�erent

aerosol scattering models and codes are employed. They ask if our BRDF will represent the right

boundary condition for another atmospheric scattering model.

The BRDF we retrieve is the true BRDF, �, independent of the atmosphere (see section 3.2.4 and

equation (40)). This parameter is a pure surface property and does not vary with scattering model,

so it is certainly the right boundary condition. Appendix D shows that BRDF and albedo can be

retrieved within a mean error of less than one percent by the simple iterative coupling we use in our

algorithm provided that the atmospheric properties are known.
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8. The panel questions the assumption that model selection, which is based on VNIR bands 1{4, is

extensible to SWIR band 5{7.

Model selection is based on the structure of the surface rather than on its spectral characteristics. Ross-

thin and Ross-thick kernels are di�erentiated by leaf area index; Li-sparse and Li-dense kernels are

di�erentiated by the size and spacing of individual plant crowns. It is the weights on the kernels that

re
ect the scattering mechanisms, which are wavelength-dependent. Thus an open forest or shrubland

may be appropriately characterized by the Ross-thick/Li-sparse model, but for the red band, where

volume scattering is small and geometric e�ects are dominant, and the Li-sparse kernel will carry the

weight. In the near-infrared, the Ross-thick kernel will dominate, since leaf scattering will reduce or

outweigh geometric e�ects. Thus, theory suggests that the model selection is, indeed, extensible to the

SWIR bands.

However, it would be nice to con�rm this with observations. Of the sources of bidirectional re
ectance

data commonly available, only one instrument, PARABOLA, acquires data beyond silicon wavelengths,

and that is for the wavelength region of MODIS band 6 (TM band 5) only (1.62|1.69 �m). Data are

entirely lacking for MODIS Bands 5 and 7. Although our e�orts have focused heretofore on red and

NIR bands almost exclusively, we will reanalyze our PARABOLA datasets to examine this question.

(e) Near-term Recommendations for Improvements to the Data Product

1. The panel speci�cally requests that we evaluate the �tting process as a function of number of obser-

vations and the solar/viewing directions of the observation, and that this also be accomplished for

heterogeneous canopies.

As noted in our response to (a).1. above, evaluating the accuracy of the �tting of BRDF and retrieval

of albedo to noise, angular sampling, and data limitations has been a major thrust of our work of

late. Appendices B and C and Section 3.3.2 summarize these results. However, our work has not

examined heterogeneous canopies thus far, and we will endeavor to do so as model development and

validation proceed in the prelaunch time frame. Note that this may not be an easy task, as few

if any bidirectional re
ectance models of heterogeneous canopies (beyond savannas) exist, and most

measurement campaigns are directed at homogeneous cover types! AirMISR will help considerably,

since its 10-km swath width is wide enough to acquire directional imagery from complex heterogeneous

targets.

2. The panel suggests that we systematically evaluate the linearity of the scaling for the models.

As noted in our response to (a).5. above, we will endeavor to do so.

3. We are charged with exploring how sensitive the product is to alternative atmospheric scattering

models and to help explore its use with atmospheric scattering modelers.
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In response to the SWAMP review panel's concerns about alternative atmospheric correction algo-

rithms, a working group of atmospheric correctors from MODIS, MISR, and ASTER has been formed

under the lead of Eric Vermote. We will work with this group on these issues.

4. The panel requests that we determine the usefulness of the product in biophysical parameter estimation

by carrying out the inversion for known vegetation canopies.

We already have some early indications that such biophysical parameters as land cover type can be

retrieved from the product. Appendix A, Figure 1 documents how patterns of RMSEs to the various

models can indicate cover type from the inference of the dominant scattering mechanisms. Appendices I

and J document the mapping of kernel weights for the modi�ed Walthall and Roujean models and

illustrate that the spatial context of the weights contains information about the land cover type.

We wish to reassure the panel that we are just as interested in retrieving biophysical parameters

from our models as they are! Originally our plan was for structured inversion of physical models,

but in response to early reviews, we have concentrated on developing a practical, data-driven, robust

algorithm for the purposes of albedo retrieval and characterizing the shape of the BRDF for view angle

correction. We view biophysical retrievals as the next important step for this algorithm and line of

research, and will pursue it vigorously in the future.
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Validation of Kernel-Driven Semiempirical Models for
Global Modeling of Bidirectional Re
ectance

Baoxin Hu, Wolfgang Wanner, Xiaowen Li, and Alan H. Strahler

The semiempirical, kernel-driven Ambrals BRDF model

(Wanner et al., 1995) was developed for correcting

and studying view and illumination angle e�ects of a

wide variety of land covers in remote sensing applica-

tions. This model, also scheduled for use in producing

a global bidirectional re
ectance distribution function

and albedo data product from EOS-MODIS and MISR

data, is validated in this paper by demonstrating its

ability to model 27 di�erent multiangular data sets

well, representing major types of land cover. The se-

lection of the kernels used in the model is shown to re-

late to land cover type, and the inversion accuracy to

be good in nearly all cases: the correlation coe�cient

between modeled and observed re
ectances is larger

than 0.9 for about half of the data sets and larger

than 0.75 in all but one case where the observations

are irregular. The average root mean squared error of

the inversions is 0.034. A new kernel modeling the

sun zenith angle dependence of multiple scattering is

introduced and shown to improve �ts for dense vegeta-

tion. Operation of the Ambrals model is demonstrated

by applying it to an ASAS image on a per-pixel basis.

INTRODUCTION

With the increasing use of coarse and medium-resolution
o�-nadir viewing sensors producing re
ectance data
for global monitoring, analysis of the BRDF (Bidi-
rectional Re
ectance Distribution Function) of each
pixel is becoming more and more important. The
BRDF can not only be used to compare observations
obtained at di�erent angles or standardize observa-
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Boston University
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tions to a common geometry but also to provide sur-
face physical parameters and the boundary condition
for radiative transport in the coupled atmosphere-
earth system.

At the same time, global change research intro-
duces new requirements into the modeling of the bidi-
rectional re
ectance of vegetation. Studies of the
BRDF properties of vegetation have for the most part
been carried out over thematically homogeneous sur-
faces and for a limited variety of land covers. The
BRDF models developed also usually assume homo-
geneity of the land cover. However, to allow frequent
global coverage the satellite sensors used in global
change research typically do not possess high spatial
resolution. For example, the U.S. National Oceano-
graphic and Atmospheric Administration (NOAA) Ad-
vanced Very High Resolution Radiometer (AVHRR),
commonly used in land surface monitoring, has a spa-
tial resolution of 1.1 km at nadir. The Moderate
Resolution Imaging Spectroradiometer (MODIS) to
be launched in mid-1998 on the EOS-AM-1 platform,
which will be the primary Earth Observing System
(EOS) sensor for observations of terrestrial dynam-
ics (Running et al., 1994), is a 36-channel radiometer
covering 0.415{14.235 �m in wavelength with a spa-
tial resolution ranging from 250 m to 1 km at nadir,
depending on the band. For sensors of this kind, a
given pixel will frequently contain a heterogeneous
mixture of bare soil and vegetation canopies, or a
mixture of spatially distinct types of vegetation with
di�erent structural and optical properties. Because of
the global coverage provided, a very large number of
di�erent surface types will be viewed. Therefore, it is
necessary to develop BRDF models of a type that can
readily be applied to a variety of inhomogeneous land
covers, that is 
exible enough to respond to changing
scenarios, and that is up to the demands of global
data processing by being very rapidly invertible.

One type of BRDF model that ful�lls these re-
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quirements very well is the semiempirical kernel-driven
type originally suggested by Roujean et al. (1992) and
later developed further by Wanner et al. (1995a) in
form of the Ambrals BRDF model (Wanner et al.,
1997). This model type has been successfully applied
to a variety of remotely sensed data sets including
AVHRR data (Leroy and Roujean, 1994; Li et al.,
1996; Ruiz de Lope and Lewis, 1997) to correct for
surface BRDF e�ects, for example in the vegetation
index. The Ambrals model will also be used in gener-
ating the global MODIS BRDF and albedo standard
data product (Strahler et al., 1996; Wanner et al.,
1997).

Previously, only limited validation of the mathe-
matical expressions used in the Ambrals model has
been published (Strahler et al., 1995; Wanner et al.,
1995b; Hu et al., 1996; Wanner et al., 1997). In this
paper, we now present more extensive validation of
the Ambrals BRDF model using various bidirectional
re
ectance data collected over a wide variety of sur-
face types. Since currently almost no BRDF data sets
for heterogeneously mixed land surfaces are available,
validation is restricted to homogeneous cover types
even though it is expected that the models will dis-
play their strength more obviously for mixed pixels.
Data for mixed scenes will be more readily available
in a few years.

MODELING BIDIRECTIONAL

REFLECTANCE WITH KERNEL-DRIVEN

MODELS

Kernel-Driven BRDF Models

In operational processing, the physical approach
to BRDF modeling is problematic since it still is
neither 
exible enough nor computationally simple
enough to allow global rapid inversions on a regular
basis. It has therefore been the strategy for the three
largest planned operational BRDF and albedo prod-
ucts, those fromMODIS, the EOS Multi-Angle Imag-
ing Spectroradiometer (MISR) (Diner et al., 1991),
and the POlarization and Directionality of the Earth's
Radiation instrument (POLDER) (Deschamps et al.,
1994; Leroy et al., 1997) to use linear or semilinear
semiempirical BRDF models. These models retain
some physical interpretation while being highly ca-
pable of adapting to many BRDF shapes and being

very rapidly invertible. Their number of parame-
ters is small, usually three. MISR will be using the
semiempirical RPV BRDF model developed by Rah-
man et al. (1993) in a form modi�ed by Martonchik
(Engelsen et al., 1996), POLDER will use the Rou-
jean kernel-driven model (Roujean et al., 1992), and
MODIS will rely on the kernel-driven semiempirical
Ambrals BRDF model (Wanner et al., 1995a, 1997)
that will here be validated, and will also run the em-
pirical modi�ed Walthall model (Walthall et al., 1985;
Nilson and Kuusk, 1989) in parallel. Ambrals stands
for: Algorithm for MODIS bidirectional re
ectance
anisotropy of the land surface.

In the kernel-driven semiempirical approach, the
BRDF is modeled as a weighted sum of a volume
scattering function and a surface scattering function
(called kernels), and a constant (Roujean et al., 1992).
These kernels are derived from approximations to
physical BRDFmodels, so they retain a physical mean-
ing. In model inversion, the weight given to each ker-
nel is determined empirically by �tting to the multi-
angular observations made. Thus, it is the weights of
the semiempirical kernels that are retrieved, charac-
terizing the balance between volume and geometric
scattering in the possibly mixed scene viewed.

Volume and surface scattering kernels are derived
from physical radiative transfer models and geometric
optical models by simplifying them to the following
format by reasonable approximations:

R(�i; �v; �;�) = c
1
(�)k(�i; �v; �) + c

2
(�); (1)

where c
1
and c

2
are constants containing physical pa-

rameters, R is the modeled value of the bidirectional
re
ectance of surface objects, and k is the kernel func-
tion dependent only on viewing and illumination ge-
ometry; �i and �v are illumination and viewing zenith
angles, � the relative azimuth, and � the wavelength.
If after approximations the kernel k still contains pa-
rameters, they are set to a typical value that may
vary from one kernel to the next.

A complete kernel-driven semiempirical model has
the form

R(�i; �v; �;�) = fiso(�) + fgeo(�)kgeo(�i; �v; �)

+fvol(�)kvol(�i; �v; �); (2)

where the quantities kgeo and kvol are the geometric-
optical surface-scattering kernel and the radiative-
transfer volume-scattering kernel, and the factors fgeo
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and fvol are their respective weights. The term fiso

is the contribution of isotropic scattering.

The Ambrals BRDF Model

The original Roujean model used a kernel de-
rived from a single-scattering radiative transfer the-
ory by Ross (1981), called the Ross-thick kernel, and
a geometric-optical kernel for rectangular protrusions
(Roujean et al., 1992). The latter kernel was found
not to �t some cover types well, especially dense for-
est canopies (Roujean et al., 1992). The Ambrals
BRDF model makes use of an improved set of ker-
nels. The Ross-thick kernel, derived for large val-
ues of the e�ective scattering leaf area index, is also
used, but alternately an approximation for low e�ec-
tive values of the leaf area index, called the Ross-thin
kernel, is available (Wanner et al., 1995a). Which of
the two kernels to use for a given inversion is decided
a priori, is based on previous experience, or is de-
cided such that the kernel chosen produces the least
root mean squared error (RMSE) in inversion. Sim-
ilarly, the Ambrals model allows for two alternate
choices for the geometric-optical kernel, derived for
di�erent types of scenes (Wanner et al., 1995a). One,
called the Li-sparse kernel, is an approximation to the
geometric-optical mutual shadowing model by Li and
Strahler (1992) for sparse ground objects, where the
BRDF is mainly governed by shadow casting. The
second geometric kernel, the Li-dense kernel, is deter-
mined by the bright sunlit object faces mainly visible
due to mutual shadowing e�ects in dense ensembles
of ground objects, for example dense forests.

The Ambrals model, as it is to be used for generat-
ing the MODIS BRDF/albedo data product, thus oc-
curs in four variants that are used to optimize the in-
version. These are the Ross-thin/Li-sparse, the Ross-
thick/Li-sparse, the Ross-thin/Li-dense, and the Ross-
thick/Li-dense modes of the model. The Li-sparse
kernel is formulated for round crowns, the Li-dense
kernel has prolate crowns with a diameters ratio of
2.5. Both kernels model crowns where the mean dis-
tance from the ground to the lower edge of the crown
is half of the crown height.

Error Functions Used

Like all linear models, the Ambrals BRDF model
can be inverted analytically through matrix inver-
sion (Lewis, 1995), avoiding costly numerical inver-
sion problems. In each wave band, a set of model pa-
rameters is determined through minimization of an
error function,

e
2 =

1

N � np

NX
j=1

�
R obs
j � Rmodel

j

�
2

Wj

: (3)

Here, N is the number of observations, np the num-
ber of parameters of the model, Robs and Rmodel are
observed and modeled re
ectances, respectively, and
Wj is a weighting factor that may be chosen to give
di�erent weights to di�erent observations if desired.
In the absence of qualifying knowledge, Wj is com-
monly speci�ed as unity. For a relative error measure,
Wj = Rj . An absolute error measure generally en-
sures best accuracy for large values of the re
ectance,
which dominate albedo, but does not put a strong em-
phasis on small re
ectances that may be of particu-
lar interest for some applications. A relative measure
of error does not show this latter problem, but since
larger absolute deviations are allowed for large values
of the re
ectance, albedo derived from the BRDF is
likely to possess a larger absolute error as well.

A similar problem exists when attempting to �nd
a function for minimizing the error in several wave
bands simultaneously. The weight given to the er-
ror made in each band may be determined either to
be equal, to favor bands with small albedos by in-
troducing a weight in each band proportional to the
size of the albedo, or by weighting according to the
proportion of radiation present in each band. In this
study, the RMSE determined for a speci�c data set
and model is given by

RMSE =

vuut 1

nb

NbandX
i=1

e2

wi
; (4)

with both Wj and wi presently set to unity, the lat-
ter determining the contribution of each band to the
selection of the best-�tting kernel combination of the
Ambrals model; nb is the number of wave bands.
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DATA SETS USED

As mentioned earlier, kernel-driven BRDF models
have been developed for applications at the global
scale. They are designed to describe the bidirec-
tional re
ectance of mixed land cover types. But be-
fore more measurements for heterogeneous scenes are
available, it is necessary and useful to validate the
model using �eld-measured data over a single land
cover type. A number of such data sets are available
as detailed below, covering a large variety of land
cover types with variations, for example, in canopy
coverage and di�erences in leaf area index (LAI). All
of these data sets are available for several di�erent
sun zenith angles. Some studies (e.g., Engelsen et al.,
1996) have also used numerical BRDF forward mod-
eling to explore model properties, but due to possi-
ble similarities in the mathematical expressions used
in the modeling of both the forward and the inverse
model their use for validation is limited. Table 1 sum-
marizes basic properties of the data sets that were
used.

1) BRDF data sets by Kimes
Kimes (1983) collected a series of multiangular data
sets of a plowed �eld, a corn �eld, orchard grass and a
grass lawn with 0, 25, 50 and 97 percent of vegetation
cover, measured near Beltsville, Maryland. In situ
measurements made in Northern Africa of three land
covers with low and two land covers with high vege-
tation coverage were reported by Kimes et al. (1985).
They are annual grassland, hard wheat, steppe grass,
irrigated wheat, and soybean. Their corresponding
coverage is 4, 11, 5, 70 and 90 percent, respectively.
Helicopter measurements were performed on two kinds
of high coverage forest (70 and 79 percent) dominated
by pine trees in one case and hardwood trees in the
other, both situated in Virginia (Kimes et al., 1986).
Data collected in the red (580{680 nm) and the near-
infrared (730{1100 nm) bands were used in this work,
available for either three or four sun zenith angles de-
pending on the case. The view zenith angles range
from 0� to 75� in increments of 15�. Relative azimuth
angles varied from 0� to 345� in increments of 45�.

2) Soybean data by Ranson
Three bidirectional re
ectance data sets were col-
lected by Ranson et al. (1985) over a commercial soy-
bean �eld in West Lafayette, Indiana, on three dates
during the summer of 1980 with an Exotech model

100 radiometer in four spectral bands (500{600, 600{
700, 700{800, and 800{1100 nm). The view zenith
angles observed at were 0�, 7�, 22�, 30�, 45� and 60�.
View azimuth angles ranged from 0� to 315� in steps
of 45�. On the three dates (July 18, July 25, and
August 27), Vegetation coverage was 72, 83 and 99
percent.
3) Boreal forest data by Deering
Deering et al. (1995) measured the bidirectional re-

ectance of Old Jack Pine, Old Black Spruce and
Aspen at the BOREAS forest in Canada on dates
May 31, June 7 and July 21. The instrument used
was PARABOLA, which allows to acquire radiance
data for nearly the complete sky- and ground-looking
hemispheres. Data are post-processed and binned to
intervals of 15� in zenith angle and 30� in azimuth
angle. In this study, data for the red (0.650{0.670
nm) and the near-infrared (810{840 nm) bands were
used.

4) Soil data by Irons
Three data sets of a bare soil multiangular re
ectance
were collected by Irons et al. (1992) in 1989 using the
MMR instrument on the ground and for several dif-
ferent sun zenith angles. The three data sets di�er
in the surface roughness of the soil, which was pro-
duced by working the soil with di�erent agricultural
machines. Surface roughnesses were 1.2, 2.6, and 3.9.
The view zenith angle ranged from 0� to 70� in in-
tervals of 10� and the view azimuth angle from 0� to
180� in intervals of 45�.
5) Grassland data from FIFE
The re
ectance of a grassland at the FIFE study site
located south of Manhattan in the Konza Prairie of
northeastern Kansas was measured on July 11 and
October 9, 1987 using MMR (cf. Walthall and Mid-
dleton, 1992). Vegetation was primarily a mixed grass
including several species. View zenith angles observed
were 0�, 20�, 35�, and 50�, the solar zenith angle was
around 20� for one data set and around 55� for the
other.

6) Airborne POLDER data
An airborne version of the POLDER instrument was
used to collect multiangular re
ectance data in the
area of La Crau, France, in June, 1991 (Leroy et
al., 1996). The area is covered by a wide variety
of vegetation types, such as sorghum, sun
ower, veg-
etable, vine and grass. After registration of several
POLDER images, data with various view and illumi-
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nation angles were obtained for the red (630{670 nm)
and near-infrared (830{870 nm) wave bands.

EVALUATIONOFMODEL PERFORMANCE

RMSEs of Inversion and Kernel Selection

To evaluate the four available kernel combinations
for the Ambrals model, each was �tted to each of the
multiangular data sets and the RMSEs and correla-
tion coe�cients between the predicted and observed
re
ectances were computed. Inversions were carried
out simultaneously for all available bands, i.e., each
kernel combination was required to not only �t the
re
ectances in each band well, but also to minimize
the error across bands (mostly two, red and near-
infrared) according to equation (4) at the same time.
The results show that nearly all data sets are �t well
by at least one of the model variants.

This may be seen in Figure 1, which shows the
RMSE for each model variant for selected di�erent
land cover types. As expected, di�erent kernel com-
binations produce the best �t (the lowest RMSE) for
di�erent types of land cover.

Cases with bare soil or sparse vegetation, such
as the barren plowed �eld, the bare soil (Irons), the
annual grass (coverage 4 percent), or the hard wheat
(coverage 11 percent) are �tted better by the Ambrals
variants with the Li-sparse kernel than those with the
Li-dense kernel. For these land cover types, shadow-
casting of clumps of soil and vegetation mainly a�ects
the bidirectional re
ectance. Thus surface scattering
dominates the scattering of solar radiation. Due to
the smallness of the contribution due to volume scat-
tering, the selection of volume scattering kernel has
little in
uence. Of the two surface scattering kernels,
the Li-sparse kernel is chosen over the Li-dense ker-
nel because it is the one that most strongly derives
its shape from e�ects of shadow-casting.

For horizontally uniform vegetation canopies with
many leaves, the type most di�erent from bare soil
and sparse vegetation, results are appropriately dif-
ferent. Examples shown in Figure 1 are the orchard
grass (LAI is 1.0) and the irrigated wheat (LAI is 4.0).
Their canopies tend to be continuous and thus vol-
ume scattering is dominant. Whether the Li-sparse
or the Li-dense kernel is selected does not make much
di�erence in these cases. But the model variants con-

taining the Ross-thick kernel �t the bidirectional re-

ectances better than those using the Ross-thin ker-
nel.

A third type of canopy is represented by dense
vegetation composed of individual crowns, where mu-
tual shadowing in viewing and illumination direction
is the dominant process. In such cases, only illumi-
nated tops of crowns are visible at large view zenith
angles. Shadows cast by the crowns are mostly invis-
ible due to mutual overlapping in the view direction,
and no background is visible, which makes this case
di�erent from the case of sparse vegetation, where the
shadows remain visible. As expected, model variants
using the the Li-dense kernel are found to provide
the best �t to the dense forest canopy, such as the
hardwood forest data set.

But for the sparser old black spruce stand, shown
in Figure 1 in contrast to the hardwood forest, both
mutual shadowing of crowns and shadow casting play
a role. Thus the model variants with the Li-sparse
kernel �t this data set a little better than those with
the Li-dense kernel, although all four �t it well.

For some land cover types, all four model variants
�t at almost the same level. Examples are the soy-
beans (data from Kimes and Ranson), the grassland
(FIFE) and the sun
owers (POLDER). This may be
because the respective canopies do not display strong
bidirectional re
ectance properties for the given an-
gular samplings.

From this analysis it is obvious that the BRDFs
of di�erent land cover types are best represented by
di�erent kernels in the Ambrals model. No data set
is �tted with an RMSE of more than 0.046. The
pattern given by which kernels �t well and which do
not in a particular case can indicate basic charac-
teristics of the observed surface, information that is
potentially useful in land cover classi�cation since it
is di�erent from the spectral information (for exam-
ple the sparse/dense distinction for forests). What
is retrieved is not merely the parameters required for
a reasonable �t, but the kernel choice also reveals
whether one particular approximation made or the
other is more suitable for describing the BRDF. Such
information would not be obtained in this way from a
single BRDF model variant, especially since all Am-
brals kernel combinations produce �ts RMSEs in a
seemingly reasonable range.
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Principal Plane and Principal Cone Fits

This leads to an important question regarding the
RMSEs of the four Ambrals kernel combinations plot-
ted for each data set in Figure 1. Do the relatively
moderate di�erences seen in the value of the RMSE
between the four model variants signify relevant dif-
ferences in the modeled re
ectances? To answer this
question, Figure 2 shows principal plane and princi-
pal cone plots of the modeled re
ectance for the best-
�tting and the worst-�tting kernel combinations, and
the observed data, for a few cases and in the red and
near-infrared wave bands. These cases were selected
to have similar solar zenith angles of observation and
to represent major types of vegetation, bare, sparse,
dense and forest.

The bare soil and very sparse annual grass data
sets were best represented by models containing the
Li-sparse kernel. Figure 2 shows this �t and, for com-
parison, that obtained when using the Li-dense kernel
instead. Obviously, employing the Li-sparse kernel
provides a better �t in the hotspot region. For the
annual grass, the azimuthal dependence of re
ectance
on the principal cone is not modeled too well by the
model variants containing the Li-dense kernel.

The plots for the dense irrigated wheat show that
the model variant based on the Ross-thick kernel �t
the azimuthal change of re
ectance on the principal
cone much better than those containing the Ross-thin
kernel, use of which leads to a clear underestimation
of the re
ectance.

Finally, the plots for the hardwood forest show
that while both the best-�tting model variant, Ross-
thick/Li-dense, and the worst-�tting model, Ross-
thin/Li-sparse, have some problems with this data
set, the �ts provided by the former are better than
those of the latter, especially on the principal plane
in the near-infrared.

Figure 2 serves to demonstrate that not only do
di�erent types of land cover respond to di�erent ker-
nel combinations used in the Ambrals model, but the
combinations producing the smaller RMSE also �t
the data better to an extent that justi�es, we believe,
using di�erent kernel combinations depending on the
case. Even though the RMSEs of the bad-�tting ker-
nel combinations are not much higher than those of
the best-�tting combinations, the �ts produced are
not of similar quality. Since cases may be found where

one or the other kernel combination works best, all
should be retained in modeling.

Consequently, the best-�tting model variant in
terms of the RMSE is chosen for the subsequent anal-
ysis. Table 1 identi�es the best kernel combination
and the band-averaged RMSE for each data set found
from the inversion. In two cases, the best �t was ob-
tained when the observations were modeled purely
from volume scattering.

Correlation Between Modeled and Observed

Data

For each data set the correlation coe�cient be-
tween modeled and observed re
ectances is calculated
in the red and the near-infrared. The results are also
shown in Table 1. In the red band, nearly half of
all data sets, 12 of 27, had correlation coe�cients
larger than 0.9; 18 of 27 had coe�cients larger than
0.8; and 23 of 27 sets had coe�cients larger than
0.75. Only one set had a correlation coe�cient less
than 0.7, which will be explained later. In the near-
infrared, the �ts are even better. Half of all sets, 13
of 27, have correlation coe�cients larger than 0.9. 23
of 27 have coe�cients larger than 0.8, and 26 of 27
have coe�cients larger than 0.75. These values in-
dicate a reasonable agreement between the modeled
and observed values.

Scatter plots of modeled versus observed re
ectance
are shown in Figure 3. For each of four di�erent land
cover types, bare, forest, broadleaf crops, and grasses,
the data with the best correlation coe�cient and the
data with the worst correlation coe�cient are shown
to demonstrate the range of results obtained. The
bare soil is modeled quite well in both cases, with
correlation coe�cients over 0.9. For the other land
cover types, the good �ts are excellent while for the
ones with lower correlation coe�cients display some
scatter of points away from the diagonal. In the case
of the pine forest, it is probable that the insu�cient
handling of multiple scattering by the kernels, which
approximate it as being isotropic, causes the prob-
lems. An isotropic approximation to multiple scat-
tering may be reasonable for sparse canopy cases, but
the pine forest has a coverage of 70% and the data
were obtained at four sun zenith angles ranging from
26� to 74�. The e�ect of multiple scattering may be
expected to be large. We will later show that an im-
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provement of the multiple scattering treatment of the
model will indeed improve this �t.

In the broadleaf crop class, the corn data produces
the worst �t, with a correlation coe�cient in the red
of 0.47. However, these data are extremely noisy, ei-
ther due to problems during the measurement or due
to actual local peculiarities of the canopy viewed that
are probably not relevant on the larger scale of satel-
lite remote sensing. Figure 4 plots a part of these
data in the red to illustrate the point; the results for
this data cannot be taken as typical in any way, or
as testing a model. The unsystematic change of re-

ectances observed in the red band is not present as
strongly in the near-infrared band, which promptly
produces a better �t, the correlation coe�cient be-
ing 0.75. Roujean et al. (1992), testing their model
on this data set, also found correlation coe�cients of
the same magnitude, 0.37 and 0.73. Consequently,
instead of this data set, Figure 3 displays the next-
worst �t for a broadleaf crop, that for soybean data
(Kimes).

A similar situation is encountered with the worst
example of a �t to grass-like vegetation, where the
grass observed by POLDER has a correlation coe�-
cient in the near-infrared that is singularly small. It
is possible that registration errors cause noisiness in
the data in this case. Here, as in the corn data case,
the �t is greatly improved when in inversion di�erent
weights are given to individual observations, these
weights having been chosen according to the distance
each data point has from the local mean. The next-
worst typical case, shown in Figure 3, is the lawn data
set (Kimes).

The overall conclusion is that, with the excep-
tion of the two data sets mentioned that have other
problems and should be treated with caution, all land
cover types investigated may be reasonably well rep-
resented by the Ambrals BRDF model. From Fig-
ure 2 one may note that di�erent shapes of the BRDF
are represented, such as ones with a hotspot (�eld,
annual grass) or a bowl shape (irrigated wheat, hard-
wood forest).

This paper is concerned only with the Ambrals
model, but it is interesting to see how it compares
with one other semiempirical model, the three-parameter
RPV BRDFmodel developed by Rahman et al. (1993)
and modi�ed by Martonchik (Engelsen et al., 1996).
The RMSEs and correlation coe�cients given in Ta-

ble 1 cannot be directly compared with values pub-
lished for the RPV model, since the orginal publica-
tion (Rahman et al., 1993) is not based on the modi-
�ed version, whereas the publication using the modi-
�ed version (Engelsen et al., 1996) postprocessed the
data sets used to correct for di�use skylight, a method
not employed in this study to avoid using a standard
atmosphere for data sets collected under various con-
ditions. Therefore, table 2 gives RMSEs and correla-
tion coe�cients for the datasets measured by Kimes
and co-workers for the Ambrals and the RPV model
in direct comparison. In terms of the band-averaged
RMSE, the Ambrals model has a lower RMSE in 9
out of 11 cases, the other two being ties. The av-
erage RMSE from the Ambrals model is 0.034, that
from the modi�ed RPV model 0.041, or 20 percent
more. In terms of the correlation coe�cient, in the
red band, the Ambrals model produces better cor-
relation between measured and observed re
ectances
for 8 of 11 data sets, with one tie. In the near-infrared
band, Ambrals produces better �ts in 9 of 11 cases,
also with one tie. Judged by this particular series
of data sets, the Ambrals model seems to be some-
what better. In many cases, however, the di�erences
are not large. The modi�ed RPV model clearly is
similarly capable of also generating good �ts to the
data.

IMPROVED TREATMENT OF MULTIPLE

SCATTERING

In the kernel-driven semiempirical modeling approach,
multiple scattering is generally assumed to be isotropic,
covered by the isotropic constant of the model. In re-
ality, however, multiple scattering is dependent on
the sun zenith angle. In some applications, this de-
pendence is weak enough to be ignored, but in others
it is not. When �tting the models to data covering
several di�erent sun zenith angles, problems may oc-
cur.

We study this problem further by using a fourth
kernel term in the models to describe the sun zenith
angle dependence of multiple scattering more explic-
itly. This kernel, the Hapke kernel, is derived from
theory put forward by Hapke (1981). Based on the
fundamental principles of radiative transfer theory,
Hapke derived an analytical equation for the bidirec-
tional re
ectance function of a semi-in�nite medium.
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The single-scattered radiance is derived exactly. A
two-stream approximation is used to calculate the
multiply scattered radiance of isotropic scatterers.
From the resulting expression, a kernel is derived that
has the following form:

RH =
1�p

1� !

1 + 2 cos(�i)
p
1� !

; (5)

where ! is the single-scattering albedo.
Since ! cannot be a free parameter if this term is

to be used in a kernel-driven model adhering to the
form given by equation (2), it is set to �xed values
in each wave band, here chosen to be 0.08 in the red
and 0.8 in the near-infrared.

This term is dissimilar to the other kernels and
may therefore be used in a 4-parameter BRDF model.
Figure 5 compares inversion results from the 3-parameter
and the corresponding 4-parameter model for several
di�erent data sets using scatter plots. For sparse
vegetation, here represented by hard wheat (cover-
age is only 11 percent) and steppe grass (coverage 5
percent), no di�erence is observed between modeling
with and without the Hapke kernel. This is expected,
since multiple scattering plays only a negligible role
for sparse vegetation. For dense vegetation, however,
the accuracy of the �ts increases. Coe�cients be-
tween modeled and observed re
ectances increase in
both the red and the near-infrared bands, for example
from 0.775 to 0.880 in the red and from 0.715 to 0.804
in the near-infrared for the pine forest data set. For
the lawn grass, the increase is from 0.724 to 0.787 in
the red, and from 0.835 to 0.955 in the near-infrared.
Similar results apply to the soybean data set. These
results demonstrate that in cases of dense vegetation,
adding one parameter related to multiple scattering
can improve the �t quality of the model, whereas no
change is achieved for sparse vegetation.

Caution should be used when applying the Hapke
kernel to re
ectance data remotely sensed from space.
The Hapke kernel depends on a determination of the
solar zenith angle dependence of the re
ectance. How-
ever, in many remote sensing applications no range
or just a rather small range of solar zenith angles is
available in a particular period of time, for example
for AVHRR, MODIS or MISR. As a consequence, the
weight of this kernel will be ill determined for such
applications. A 3-parameter model will allow more
stable retrievals.

POSSIBLE IMPROVEMENTS TO THE

INVERSION PROCESS

This paper has shown that all 27 data sets used were
�tted well by at least one of the four kernel combina-
tions that comprise the Ambrals BRDF model. This
model may be used reliably for correcting angular
e�ects in remote sensing applications. The capabil-
ity of the model to describe bidirectional re
ectance
properties of surface objects can be further used to
infer basic properties of the land covers viewed.

However, the inversions could perhaps be further
improved in future work by considering the follow-
ing factors. Firstly, the data used are �eld-measured.
Radiation reaching the earth surface includes both di-
rect and di�use radiation owing to atmospheric scat-
tering, which results in a partial smoothing of bidi-
rectional re
ectance. The data could be corrected
for this e�ect where atmospheric characterization is
available for the respective times and locations when
the measurements were made. Using a standard at-
mospheric model could be considered in the absence
of such data (Engelsen et al., 1996).

Secondly, the error function used in model inver-
sion has an important in
uence on the resulting �ts
and the choice of kernels used. The weights Wj (see
equation (3) qualify the contribution of every mea-
surement to the error function. This may be used to
improve the inversion, for example when a data set
with nonuniform angular sampling displays a clus-
ter of observations in a particular angle range. Most
of the clustered observations do not contribute to es-
tablishing the shape of the BRDF but a�ect the error
function unless they are given a smaller weight. Sim-
ilarly, if a particular observation out of a set is con-
sidered to be noisy, the information it contributes to
the inversion should be lessened by giving it a small
weight. One possible way to approach this problem is
to select a suitable weight for each observation based
on an initial regression analysis. That is, the model
is �rst inverted using the same weight for all observa-
tions, then weights are attributed to each observation
according to a statistical criterion that identi�es out-
liers, then the inversion is repeated. A di�erent ap-
proach is to use error functions that are inherently
more stable against noise and outliers (Tarantalo,
1987).

The problem of how to weigh the RMSEs achieved
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in individual bands for deriving a band-averaged RMSE
on which to base kernel selection has already been
mentioned. Whether the di�erence in the magnitude
of re
ectances in the visible and in the infrared wave-
length regions should enter the error function in form
of a weighting term depends on whether a relative
deviation (implying larger absolute errors in the in-
frared) or an absolute error (implying larger relative
errors in the red) are preferable. Large relative er-
rors are less favorable for deriving albedo from the
BRDF, large absolute errors for deriving small re-

ectance values. In the present study, this problem
is also visible in that the kernel combination best �t-
ting both bands simultaneously is the combination
�tting the near-infrared band for all 11 data sets by
Kimes and co-workers, whereas it is also the best-
�tting combination for the red band in only 7 of the
11 cases (and second-best �tting in 3 other cases).
Thus for at least some types of vegetation, a suit-
able weight value should be added to the individual
bands to avoid biasing the kernel selection towards
the near-infrared re
ectances.

Finally, the Li-kernels used contain two kernel-
internal parameters describing crown shape and rel-
ative height that were each set to �xed values for
sparse and dense canopies based on general consider-
ations. If prior structural knowledge for speci�c land
cover types is available, these parameters could be
set to more appropriate values than the current ones.
Wanner et al. (1995a) show that the crown shape in
particular has an in
uence on BRDF shape.

MODELING BRDF EFFECTS IN AN

ASAS IMAGE: A DEMONSTRATION

We demonstrate operation of the Ambrals model on a
remotely sensed data set acquired by the airborne Ad-
vanced Solid-State Array Spectroradiometer (ASAS)
(Irons et al., 1991) over the Walnut Gulch area in Ari-
zona. Multiangular observations were acquired dur-
ing over
ights at a sun zenith angle of 38� and in
the solar principal plane. The ASAS instrument was
set up to acquire seven discrete images of the area at
zenith angles 15�, 30� and 45� both forward-looking
and aftward-looking, and at nadir. The ground spa-
tial resolution at nadir was 2.01 m along the 
ight
direction and 4.25 m across. All images were regis-
tered to the nadir image, and Ambrals model BRDF

inversions were carried out on each pixel.

Figure 6a shows a spatial mosaic composited of
three bands with center wavelengths of 549, 661, and
787 nm. The right half of the image is the data
acquired at 45� zenith angle in the backscattering
direction, where the sun is behind the sensor. The
left half of the image is data acquired at 45� forward
scattering zenith angle, where the sensor is facing the
sun. For obvious reasons, more shadows are visible in
the image showing the forward-scattering re
ectances
(left half) than in the image showing the backscatter-
ing re
ectances (right half). A clearly visible seam
runs through the image where the data from the two
di�erent viewing directions meet. This seam illus-
trates the magnitude of the BRDF e�ect present in a
surface such as this one if not removed. Clearly, angu-
lar e�ects would have an impact on land cover classi-
�cation and image interpretation if they were not cor-
rected. Seams like this are known from AVHRR data
in areas where data from di�erent orbits, implying
di�erent viewing geometries, are mosaicked together
(see Li et al. (1996) for an example and discussion),
and will also occur for the similarly cross-track scan-
ning MODIS instrument.

After �tting the Ambrals model to the string of 7
bidirectional re
ectances available for each pixel, the
model was used in forward mode to predict the re-

ectances for the left half of the image for the backscat-
tering view zenith of 45�, corresponding to the angle
at which the right half of the image was acquired. If
the Ambrals model fails to correctly model the BRDF
seen, the predicted re
ectances and the resulting im-
age will be noisy or the seam will be still visible. How-
ever, Figure 6b shows the composite, where the left
half is the forward-modeled data and the right half
is the same data as shown in Figure 6a. The seam
is gone. Shadows vanish where they should as the
model takes the re
ectances into the hotspot. In-
stead of shaded backsides, illuminated front sides of
objects and slopes are now visible. This demonstrates
once more that the Ambrals model is indeed capable
of modeling correctly the re
ectances observed.

Figure 6c shows the nadir re
ectance predicted for
each pixel by the Ambrals model where the inversion
is carried out using the 6 bidirectional re
ectances
excluding the nadir observation. Figure 6d shows for
comparison the actually observed nadir image. The
two are clearly very similar, illustrating that nadir
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re
ectance can be predicted from a string of observa-
tions at di�erent angles similar to angles applicable
to AVHRR and MODIS observations. Again, a fail-
ure of the Ambrals model to produce a reasonable �t
for each pixel would have resulted in a noisy image.

CONCLUSIONS

In this paper, we have analyzed the capability of the
kernel-driven semiempirical Ambrals BRDF model to
provide adequate mathematical descriptions of the
anisotropic re
ectance of a variety of natural sur-
faces. Kernel-driven models combine advantages of
physical models and empirical models in that they
are highly adaptable to a large variety of occurring
BRDF shapes, especially to BRDFs of di�erent land
cover types and of mixed pixels, but retain a basically-
physical interpretation of the shapes produced. They
can be inverted analytically through matrix inversion,
they scale spatially and possess only three parame-
ters, which is probably the maximal number that can
reliably be inverted from the limited angular sam-
pling available from most space-based instruments.
The Ambrals model will thus be used in produc-
ing the global MODIS BRDF/albedo standard data
product.

The mathematical expressions used in the Am-
brals model introduced by Wanner et al. (1995a) are
validated in this paper using 27 di�erent measured
BRDF data sets of a large variety of land covers.
We �nd that the Ambrals model is fully capable of
modeling these BRDFs with reasonable accuracy, the
RMSEs being 0.034 on the average and correlation
coe�cients between modeled and observed data be-
ing larger than 0.8 or even 0.9 in a great majority
of cases. Furthermore, the kernels selected may ten-
tatively be related to vegetation structural charac-
teristics, with di�erences observed between shadow-
casting canopies and those where mutual obscuring
of objects occurs, and between shadow-casting and
strongly volume-scattering canopies. While several
avenues for further improving the inversions have been
discussed, the models in their current form are well-
developed enough to be applied to remote sensing
problems involving the extraction of the BRDF and
the correction of multiangular imagery.
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Table 1: Summary of Data Sets, Kernel Selection, Inversion RMSEs and Correlation Coe�cient (r) Between
Modeled and Observed Re
ectances

Data Source Cover Type Cov. % LAI �i, Range Best-Fitting Kernel RMSE r (red) r (NIR)

Kimes (1983), Plowed Field 0 0 26-45 Ross-thick/Li-sparse 0.016 0.976 0.976
Kimes et al. Corn 25 0.65 26-68 Ross-thin/Li-dense 0.028 0.467 0.750
(1985, 1986) Lawn Grass 97 9.9 42-70 Ross-thin/Li-dense 0.046 0.724 0.835

Soybeans 90 4.6 28-76 Ross-thick/Li-sparse 0.043 0.783 0.806
Hardwheat 11 27-51 Ross-thick/Li-sparse 0.019 0.963 0.938
Annual Grass 4 28-50 Ross-thick/Li-sparse 0.023 0.945 0.878
Steppe Grass 5 35-63 Ross-thick/Li-sparse 0.024 0.887 0.922
Irrigated Wheat 70 4.0 26-59 Ross-thick 0.037 0.911 0.917
Orchard Grass 50 1.0 45-82 Ross-thick/Li-sparse 0.030 0.837 0.914
Pine Forest 70 26-74 Ross-thin/Li-dense 0.041 0.775 0.715
Hardwood Forest 79 25-79 Ross-thick/Li-dense 0.030 0.902 0.890

Ranson et al. Soybeans 72 3.0 20-49 Ross-thick/Li-sparse 0.017 0.753 0.892
(1985) 83 3.9 21-38 Ross-thin/Li-dense 0.015 0.738 0.851

99 2.9 31-61 Ross-thick 0.011 0.914 0.927

Deering Aspen 45-59 Ross-thick/Li-sparse 0.025 0.922 0.883
et al. Old Black Spruce 36-59 Ross-thick/Li-sparse 0.011 0.949 0.943
(1995) Old Jack Pine 34-60 Ross-thin/Li-dense 0.010 0.899 0.947

Irons et al. Soil I 0 0 16-68 Ross-thick/Li-sparse 0.027 0.920 0.915
(1992) Soil II 0 0 34-53 Ross-thick/Li-sparse 0.016 0.971 0.970

Soil III 0 0 28-54 Ross-thick/Li-sparse 0.027 0.931 0.933

FIFE (Walthall Grass I 1.3 19-25 Ross-thin/Li-sparse 0.021 0.769 0.896
and Middleton, 1992) Grass II 0.9 53-61 Ross-thin/Li-sparse 0.031 0.913 0.898

POLDER Grass 37-47 Ross-thick/Li-sparse 0.042 0.706 0.560
Sorghum 38-45 Ross-thin/Li-sparse 0.028 0.785 0.874
Vineyard 38-45 Ross-thin/Li-sparse 0.024 0.809 0.934
Vegetable 37-45 Ross-thin/Li-sparse 0.036 0.888 0.793
Sun
ower 38-47 Ross-thin/Li-sparse 0.023 0.869 0.910
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Table 2: Comparison of Inversion RMSEs and Correlation Coe�cients (r) Between Modeled and Observed
Re
ectances for the Ambrals Model and the Modi�ed RPV Model

Data set Ambrals mod. RPV
(Kimes) RMSE r (red) r (NIR) RMSE r (red) r (NIR)

Plowed Field 0.016 0.976 0.976 0.016 0.976 0.976
Corn 0.028 0.467 0.750 0.031 0.718 0.652
Lawn Grass 0.046 0.724 0.835 0.046 0.706 0.839
Soybeans 0.043 0.783 0.806 0.057 0.871 0.600
Hardwheat 0.019 0.963 0.938 0.025 0.941 0.897
Annual Grass 0.023 0.945 0.878 0.028 0.911 0.822
Steppe Grass 0.024 0.887 0.922 0.026 0.883 0.897
Irrigated Wheat 0.037 0.911 0.917 0.039 0.891 0.907
Orchard Grass 0.030 0.837 0.914 0.050 0.796 0.723
Pine Forest 0.041 0.775 0.715 0.049 0.659 0.560
Hardwood Forest 0.030 0.902 0.890 0.044 0.864 0.890
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Figure 1: RMSEs of Ambrals model inversions for selected data sets representing di�erent types of land
covers (barren, sparsely vegetated, grass-like, forest, broadleaf crops; refer to Table 1 for coverages and
LAIs). Kernel combinations are keyed as follows: NS, Ross-thin/Li-sparse; KS, Ross-thick/Li-sparse; ND,
Ross-thin/Li-dense; KD, Ross-thick/Li-sparse.
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Figure 2: Comparisons of �ts produced by good (solid lines) and bad (dashed lines) Ambrals kernel combi-
nations on the principal plane and on the principal cone for selected data (dots) representing di�erent types
of land cover.
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Figure 3: Modeled versus observed re
ectances in the red and near-infrared for di�erent types of land cover
(barren, forest, broadleaf crops, grass-like). The numbers given in each panel are the correlation coe�cient
in the red and in the near-infrared bands, respectively.
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Figure 4: The corn data set shows irregular behavior of the observed re
ectances (dots), leading to poor
�ts (solid lines). The situation is similar at other zenith angles in the red, and somewhat better in the
near-infrared.
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Figure 5: Modeled versus observed re
ectances in the red and near-infrared for di�erent types of land cover
(top two rows: sparse vegetation; bottom three rows: dense vegetation) and for a 3-parameter model (left)
and a 4-parameter model (right) where the Hapke-kernel for multiple scattering was added. The numbers
given in each panel are the correlation coe�cient in the red and in the near-infrared bands, respectively.
Note that �ts improve for the dense vegetation.
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Figure 6: Grey-scale representation of a three-band composite image of ASAS data (wavebands centered
at 549, 661, and 787 nm) over Walnut Gulch, Arizona. Sun zenith angle during data acquisition was 38�.
Panel (a) (top left) shows in the right half data acquired at 45� zenith angle in the backscattering direction
and in the left half data acquired at 45� zenith angle in the forward-scattering direction, where more shadows
are visible. The second panel, (b) (top right), shows in its left half the same data as shown in the left half
of panel (a), and in the right half data predicted for a backscattering view zenith angle of 45� using the
Ambrals model on each pixel and inverting the seven re
ectances observed by ASAS at 45�, 30�, 15�, and
nadir in the forward and backscattering directions; i.e., the right half of this image is observed data, the left
half BRDF-modeled re
ectance predictions. Panel (c) (bottom left) is the nadir re
ectance modeled from
inverting the 6 o�-nadir ASAS observations, panel (d) (bottom right) is the actual nadir-view observation.
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APPENDIX B:
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Abstract. This paper reports expected accuracies of bidirectional re
ectance and albedo retrievals from
the angular sampling provided by NASA's upcoming MODIS and MISR sensors on the EOS-AM-1 satellite
platform. A numerical discrete ordinates method radiative transfer model by Myneni is used to simulate
combined MODIS and MISR angular sampling as a function of latitude and time of year for six di�erent
BRDF types (land cover types) in the red and near-infrared wavebands. These simulated observations are
then inverted using three di�erent simple BRDF models scheduled for use in the future operational MODIS
and MISR BRDF/Albedo Products:the reciprocal Ambrals, the modi�ed RPV, and the modi�ed Walthall
BRDF models. Bidirectional re
ectance and albedo retrievals are studied not only at the mean solar zenith
angle of observation, but extrapolated to arbitrary other sun zenith angles as well. The in
uence of loss
of observations to clouds is also examined. Results show that albedo may be retrieved with 2 to 8 percent
median accuracy using either the Ambrals or the modi�ed RPV model for any solar zenith angle for any
MODIS/MISR sampling, and that the accuracy of predicted nadir-view re
ectance is also mostly within a 10
percent error margin. The Ambrals model may be slightly more accurate with respect to the forward model
used. The empirical modi�ed Walthall model clearly performs worse than the two semiempirical models.
These results also allow to establish error distribution histograms that may serve for assessing the overall
accuracy to be expected from the planned MODIS BRDF/Albedo Product.

1. Introduction

While the elevated standpoint of a low-Earth orbit permits systematic global remote sensing observations
of great value for monitoring continents and the Earth as a whole, it also brings with it restrictions given
by orbital and instrumental mechanics and the limitations of operating an instrument remotely in space.
It is of great interest for the assessment of remote sensing missions to determine the accuracy with which
parameters of interest may be retrieved from space. This paper discusses the accuracy to be expected for
bidirectional re
ectance distribution function (BRDF) and albedo retrieval from the Moderate Resolution
Imaging Spectroradiometer (MODIS) and the Multi-Angle Imaging Spectroradiometer (MISR), two instru-
ments to be launched on the EOS-AM-1 platform in mid-1998 that are central to NASA's Earth Observing
System (EOS) (Running et al., 1994; Diner et al., 1991).

In focusing on BRDF and albedo, this paper studies two parameters that quantify the directional re-

ectance characteristics of the Earth's surface, which is the lower boundary for atmospheric transfer of
radiation. BRDF and albedo are consequently of relevance for precise determinations of the Earth's radia-
tion budget, climate simulations and atmospheric correction. Other applications are in angular normalization
of images, land cover classi�cation and cloud detection. Besides shedding some light onto the more general
question of how e�ectively BRDF and albedo may be derived from space-based remote sensing measurements,
this study also is intended to provide much-needed accuracy predictions and error distribution histograms
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for BRDF and albedo retrievals from MODIS and MISR observations. Such retrievals are to be performed
for the operational BRDF/Albedo standard data product that will be produced routinely from EOS data
by the MODIS project (Strahler et al., 1996; Wanner et al., 1997).

The following section 2 outlines the experimental plan and gives details on its components. Sample
results for BRDF retrieval are presented in section 3, sample results for albedo retrieval in section 4. Overall
BRDF and albedo retrieval accuracies are detailed statistically in section 5, which is followed by a discussion
and conclusions in section 6.

2. The Experimental Plan

2.1. Outline of the experimental plan

The study was conducted as follows. The orbital simulation tool Xsatview (Barnsley et al., 1994) was used to
generate simulated MODIS and MISR viewing and illumination geometries for di�erent geographic latitudes
of observation and days of the year. For each of the observation geometries generated, a discrete ordinates
method radiative transfer code (Myneni et al., 1992) was used to compute simulated observations of the
bidirectional surface re
ectance for six distinct BRDF types resembling six di�erent land cover types in the
red and the near-infrared (NIR) wavebands. These were then inverted using three di�erent semiempirical
or empirical BRDF models that are slated for use in operational BRDF/albedo products. These are the
Ambrals kernel-driven BRDF model (Wanner et al., 1995, 1997), the Rahman-Pinty-Verstraete model (RPV)
(Rahman et al., 1993) in a form modi�ed by Martonchik (Engelsen et al., 1996), and the empirical modi�ed
Walthall model (Walthall et al., 1985; Nilson and Kuusk, 1989). The �rst and last are to be used for the
MODIS BRDF/Albedo Product (which also uses MISR data) (Strahler et al., 1996, Wanner et al., 1997),
the second for the MISR Surface Product that includes BRDF and albedo parameters (Diner et al., 1996,
Martonchik, 1997).

The BRDF model parameters resulting from the inversions conducted allow reconstruction of the full
BRDF and calculating directional-hemispherical and bihemispherical albedo. The di�erent sampling geome-
tries studied represent inversions of the six di�erent BRDF (landcover) types under changing sparse angular
sampling, these changes being given by changes in the latitude and time of year of the satellite observations.
Any variations in the re
ectances and/or albedos found in these experiments for any of the land cover types
are consequently due alone to changes in the angular distribution of samples, everything else having been
kept constant. They re
ect the capability of the di�erent models to interpolate and extrapolate the BRDF
observed, given the angular sampling available from observations from space. For example, sampling close
to the principal plane may allow a more reliable reconstruction of the BRDF observed than sampling close
to the cross-principal plane. Sampling at large solar zenith angles may lead to more problems in the infer-
ence than at small solar zenith angles since the approximations made in the BRDF models mostly become
questionable at very large zenith angles. Additionally, one BRDF model may be superior to another in its
ability to correctly infer realistic BRDFs from incomplete angular sampling.

The investigation of this problem consists of two parts. First, bottom-line accuracies of BRDF and albedo
retrievals need to be determined, which are given by the accuracies achievable in the absence of any other
confounding factors such as clouds, atmosphere and noise. Consequently, BRDF model inversion is studied
in this paper assuming angular sampling from MODIS and MISR without loss of observations to cloud cover
and assuming perfect atmospheric correction of observations (i.e., no atmosphere). Also, the observations
are assumed not to be noisy, although some residual noise from the discreteness of the forward-modeling
scheme used is present. In this way, the errors found will represent problems with angular sampling geometry
only. Given the models used, retrievals can never be expected to be better than what is found under such
conditions.

A second part of the overall investigation, currently in progress, is required to establish how these baseline
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accuracies will change given uncertainties in the aerosol optical depth and atmospheric correction, loss of
observations to cloud cover, and the presence of possibly noisy data. When judging the results of those
studies, however, it will be essential to know what the accuracies achievable under optimal conditions are, if
individual sources of error are to be separated. The needed baseline accuracies are reported here. However,
some results on the impact of loss of observations to cloud cover are given in section 5. Indications are that
with MODIS and MISR sampling, the accuracies remain about the same even in the presence of cloud cover,
making the results derived in this study rather general.

The e�ect of noisy data on BRDF and albedo retrieval using MODIS and MISR angular sampling is
being reported elsewhere (Wanner et al., 1996; Lewis and Wanner, 1997).

2.2. MODIS and MISR Angular Sampling

The EOS-AM-1 platform carrying MODIS and MISR will be placed into a polar orbit with a 10:30 a.m.
equatorial crossing time. The orbital two-repeat cycle is 16 days, which is also the time resolution at which
the global MODIS BRDF/Albedo Product will be routinely produced.

The viewing geometries of the two instruments used in generating this product complement each other.
Whereas MISR is an along-track imager, MODIS scans across-track. In 16 days, MISR observations will
have been made that cut across the viewing hemisphere at an approximately constant azimuth relative
to the solar plane and are close to perpendicular to a similar cut provided by MODIS observations. The
azimuth angles found depend on the latitude and the time of year. This setup ensures a good coverage of
the viewing hemisphere when data from the two instruments are used jointly. This applies even to cases
where some observations are lost due to cloud cover. Coverage of the solar hemisphere is more problematic,
as the solar zenith angle for MODIS and MISR observations will vary only slightly in each 16-day period,
but vary strongly between latitudes.

MODIS BRDF and albedo will be derived in seven spectral bands ranging from 0.47 �m to 2.13 �m,
with MISR data being available between 0.43 �m and 0.87 �m. The spatial resolution of the product will
be one kilometer, with good geolocation of each pixel ensured by a greater spatial resolution of the original
data used in building a multiangular database. This slight degradation of the spatial resolution in producing
the product is essential in regions with heterogeneous land covers.

MODIS and MISR viewing and illumination geometries were simulated using orbital simulation software
called Xsatview (Barnsley et al., 1994). Observation geometries are represented approximately due to
some simpli�cations made, but are su�ciently accurate for the purposes of this study. Observations were
simulated at 9 di�erent latitudes between 80 degrees northern and 80 degrees southern latitude, and for
solar positions corresponding to every third 16-day time period throughout the year (8 periods). Of the 72
resulting sampling scenarios, 60 provide observations with the sun above the horizon. Observations with sun
zenith angles larger than 75 degrees were discarded since this will also be the case in MODIS atmospheric
correction processing.

2.3. BRDF Forward Modeling from DOM/RTCODE

Forward BRDF Modeling was carried out using a discrete ordinates code provided by Myneni (Myneni et
al., 1992) that solves the radiative transfer equations of light scattering in structured vegetation canopies
and also takes geometrical shadowing e�ects into account. This code, used in version available in early
1996 (here called DOM/RTCODE), is written to predict the BRDFs of six land cover types with distinct
characteristics. These so-called biomes are: grasses and cereal crops (biome 1); semi-arid shrublands (biome
2); broadleaf crops (biome 3); savanna, which is a grassy understory with a sparse overstory of trees (biome
4); broadleaf forest (biome 5); and needleleaf forest (biome 6).

The parameters for each biome simulation, between 17 and 32 depending on the case, were set to realistic
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values. For all biomes, the soil background was assumed to be Lambertian and have a red hemispherical
re
ectance of 0.1 and a near-infrared hemispherical re
ectance of 0.2. The fraction of direct illuminating ra-
diation was assumed to be 0.8, not so much to simulate di�use skylight (which in remote sensing applications
would have been corrected for in atmospheric correction) but to make the BRDFs less ideal in terms of the
crispness of features produced by idealistic mathematical models but not found in a natural situation. Leaf
optical properties were generally taken to be similar across biomes. Red hemispherical leaf re
ectance was
0.076, leaf hemispherical transmittance 0.042. The corresponding values in the near-infrared were 0.52 and
0.41. Stem and branch optical properties were mostly similar to the leaf properties but sometimes chosen
to be less transparent.

The grassland biome had a leaf area index (LAI) of 2.0 with a canopy height of 0.8 m. The leaf normal
inclination was assumed erectophile. The shrubs in the semi-arid shrubland were simulated to have a LAI of
2.0 with a ground cover of 50 percent, that is the plot LAI was 1.0. The height of the shrubs was assumed
to be 4 m, sitting on the ground, and the leaf angle distribution to be uniform. The broadleaf crop canopy
was characterized as having a LAI of 3.0 with a stem and branch area index of 0.6. Ground cover was
assumed to be 80 percent, resulting in a plot LAI of 2.4. Stand height was taken to be 1.25 m, the leaf angle
distribution to be uniform and the stem normal orientation vertical.

The savanna biome type was characterized as having a 20 percent tree cover, the trees being 5 m high
with crowns of 2 m length. The LAI was taken to be 4.0 with a uniform leaf angle distribution. The
understory of grass was assumed to be 1.0 m high and erectophile with an LAI of 2.0, resulting in a plot
LAI of 2.8. The broadleaf forest is characterized by a 90 percent ground cover consisting of trees 10 m high,
with crowns measuring 4 m in height and 3m in diameter. The branch/stem orientation and the leaf angle
distribution are uniform. LAI is 5.5. The understory is 1 m high, has a uniform leaf angle distribution and
a LAI of 1.0. Total stand LAI is 5.95. The needleleaf forest, �nally, has an 80 percent ground cover with
a tree leaf area index of 2.5. The trees are 10 m high with crowns measuring 4 m in height and 2 m in
diameter, the shoots having a uniform leaf angle distribution but the needles showing clumping. The angle
between needle and shoot is 49 degrees. As before, the understory has a uniform leaf angle distribution and
an LAI of 1.0 with a plant height of 1 m. Plot LAI is 3.0.

Bidirectional re
ectances were generated from the DOM/RTCODE for MODIS and MISR viewing and
illumination geometries, and the corresponding directional-hemispherical and bihemispherical albedos de-
termined. Since two wave bands, red and near-infrared, were simulated, a total of 12 BRDFs was sampled
in 60 di�erent ways as a function of latitude and day of year, resulting in 720 observations of a BRDF from
which to attempt a retrieval of BRDF and albedo.

Generally, the BRDFs produced by DOM/RTCODE were satisfactory in the angle ranges mainly of
interest. Biomes 1 and 5 displayed no obvious problems. For biome 3, the discretization of the scheme
was visible for close-to-nadir solar zenith angles. Biomes 2 and 5 displayed small residual irregularities at
nadir view zenith for small solar zenith angles, mostly in the red band, but these were not deemed to be
overly problematic for the current study. Biome 4 displayed some noise in the backscattering direction for
large viewing and solar zenith angles, but again this was not deemed critical. Di�erences in BRDF shape
between biomes consisted mainly of the steepness of the bowl, the properties of the hotspot region, and the
magnitude of the re
ectances. All in all, however, the BRDFs for the six biomes are somewhat similar in
their overall appearance. This may either be due to similarities in the modeling used for the di�erent biome
types, or to the fact that natural BRDFs are more similar than expected when both shadowing and radiative
transfer-type e�ects are both combined realistically in the same model.

2.4. Inverse Modeling Using Simple BRDF Models

Three di�erent BRDF models were used for inverting the simulated MODIS and MISR multiangular ob-
servations, the Ambrals BRDF model (Wanner et al., 1995, 1997) in a slightly modi�ed form, the modi�ed
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BRDF model by Rahman et al. (1993), commonly called RPV, and the modi�ed Walthall model (Walthall
et al., 1985; Nilson and Kuusk, 1989). These models were chosen because they will be used for generating
BRDF and albedo from the MODIS and MISR instruments and probably are the only BRDF models cur-
rently feasible for large-scale operational applications. The latter is mainly due to their small number of
parameters and the fact that they may be inverted without recourse to iterative numerical inversion schemes,
which cannot be a�orded in global kilometer-scale processing given currently achievable computer power.
A model similar in approach to the Ambrals model is also used for BRDF and albedo modeling from data
acquired by the polarization and directionality of the earth's radiation (POLDER) instrument (Deschamps
et al., 1994; Leroy et al., 1997).

The Ambrals model and the RPV model are semiempirical models based on somewhat di�erent philoso-
phies. The Ambrals model is formulated as a sum of two expressions, one that characterizes the shadow
casting of discrete ground objects as determined by inter-object gaps, and one that characterizes volume
scattering from homogeneously distributed scattering elements as determined by intra-canopy gaps (Roujean
et al., 1992). Expressions for these two components, geometric and volume scattering, are derived through
a series of simplifying approximations from physical BRDF theories (Wanner et al., 1995), most notably a
radiative transfer theory taken from Ross (1981) and the Li-Strahler geometric-optical mutual shadowing
model (Li and Strahler, 1992). In inversion, the relative contributions of volume and geometric scattering,
and an isotropic constant, are retrieved. These may be interpreted to re
ect either the sub-resolution mix-
ture of land cover types that are dominated by either volume or geometric scattering, or to quantify the
respective scattering contributions from a single type of land cover.

For volume and geometric scattering, the Ambrals model provides a choice of two alternate mathematical
expressions each, called kernels, representing di�erent types of scattering due to di�erent types of approxima-
tions made. For volume scattering, the two kernels available describe canopies with high or low e�ective leaf
area index (Ross-thin, Ross-thick kernels), for geometric scattering they model sparse and dense canopies
(Li-sparse, Li-dense kernels). In this study, the kernels to be used for each inversion were chosen such that
a minimum root mean square absolute error between modeled and observed re
ectances is achieved (Hu et
al., 1996, 1997; Wanner et al., 1995, 1997). The crown structural parameters used in the Li kernels were:
sparse kernel, crown height to width ratio 1.0, dense kernel 2.5; both kernels, height to the center of crown
2.0, resulting in a lower sparse canopy than dense canopy. These values were chosen because they are likely
to also be used in operational BRDF processing for MODIS.

One change was made to the published version of the Ambrals model Li kernels (Wanner et al., 1995).
The original Li-Strahler BRDF model was formulated for a �xed angle of illumination (Li and Strahler, 1992).
The angle dependence of the scene component re
ectances was not part of the modeling conducted. Schaaf
and Strahler (1994) and Schaaf, Li and Strahler (1994), however, gave an expression for the most important
of these component signatures, the re
ectance of the sunlit crowns. This was modeled as following the ratio
of actual to projected sunlit crown area. In deriving the geometric Li kernels for the Ambrals model, initially
a constant sunlit crown component re
ectance was assumed for simplicity. This, however, led to the kernels
being not reciprocal with respect to an exchange of sun and viewing angle. The version of Ambrals used in
this paper resolves this situation. The sunlit crown component re
ectance C was modeled in approximation
as C= cos(�s), where cos(�s) is the solar zenith angle. This also makes the Li kernels reciprocal.

The RPV BRDF model, on the other hand, is based on a somewhat more empirical approach that
quanti�es the qualitative features of BRDF shape. Three functions that each govern one distinct aspect of
the BRDF shape are multiplied by each other to form the model (Rahman et al., 1993). These are a modi�ed
Minnaert term, used to describe the bowl-shape of the BRDF, a Henyey-Greenstein function describing the
skew in the BRDF between forward and backscattering, and a hotspot term. Like the Ambrals model, the
RPV model has three parameters, quantifying the overall intensity of the re
ectance, the strength of the
anisotropy, and the relative amount of forward and backward scattering. This provides for a wide variety
of shapes as may typically be found for observed BRDFs (Engelsen et al., 1996). The model is nonlinear,
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which is undesirable for reasons of computing resources in operational applications. Therefore, the model
was modi�ed by Martonchik (Engelsen et al., 1996) to be semi-linear, requiring only a few simple iterations
for inversion. This modi�ed form, slated for use in MISR data processing, was used in this study.

The modi�ed Walthall model (Walthall et al., 1985; Nilson and Kuusk, 1989), �nally, is a purely em-
pirical model with four parameters based on very simple expressions containing the view and illumination
angles. The attraction of this model is mainly that it manages to capture the main features of BRDF shape
while being very simple (albedo, for example, can be calculated analytically). However, it is interesting to
investigate whether the fact that the Ambrals and the RPV model are based on a more physical reasoning
than the Walthall model leads to smaller errors for these models when extrapolating BRDF inversion results
to angles where no observations were acquired, for example a di�erent sun angle. As will be seen later, the
empirical model is indeed found to be doing worse than the two semiempirical models in this respect despite
the fact that it has one more free parameter.

In keeping with the stated goal of deriving bottom-line accuracies, models were inverted by minimizing
the error function separately in the red and the near-infrared band, not simultaneously. There is an inherent
problem with respect to coupled BRDF and albedo retrieval in the two principal ways in which error in the
red and in the near-infrared band can be traded o�. If the combined absolute error is to be minimized, the
larger re
ectances are modeled relatively more accurately than the smaller ones. This provides for a precise
retrieval of albedo, which is dominated by the large re
ectances, but is less desirable in the retrieval of red
band BRDFs. A relative error measure, on the other hand, allows better modeling of small re
ectances, e.g.,
a better BRDF retrieval in the red band, but by the same token allows larger deviations in large re
ectances,
which translate into undesired larger errors in albedo. This contradiction in the requirements for the error
function with respect to BRDF and albedo retrieval is not basically resolvable. In this study, absolute error
was minimized, but separately in each band, avoiding de�nition of a tradeo� between errors in the larger
near-infrared re
ectance values and the smaller ones in the red band, and allowing to establish the sought-for
bottom-line accuracies.

3. Examples of BRDF Retrievals

Since albedo is derived through integration of the BRDF, the �rst concern is for accurate retrieval of the
BRDF. Figure 1 shows MODIS and MISR sampling at di�erent latitudes for a 16-day period starting day of
the year 96, in April. Obviously, sampling of the viewing hemisphere is rather reasonable, and even loss of
observations to clouds should not regularly impact the angle coverage in a decisive way. At some latitudes,
though, the principal plane is not being sampled by either instrument. This could be a problem in some
cases since BRDFs tend to be more dissimilar on the principal plane than on the cross-principal plane.

The main shortcoming of the angular sampling available, however, is in the solar angle hemisphere. At
each latitude the range of solar zenith angles covered is only very small, usually not more than 10 degrees.
But the main concern is that the mean solar zenith angle of observations varies strongly from one latitude
to another, covering most of the full zenith angle range. In other words, the BRDF as a function of viewing
angle will be well determined at solar angles that vary with latitude, and with time of year.

The main question with respect to BRDF retrieval consequently is whether the retrievals achievable at the
solar angle of observation may safely be extrapolated to other solar zenith angles, allowing for example the
standardization of surface re
ectances not only to a common viewing geometry but also to a common solar
geometry. The angles most preferred for such a standardization would be nadir viewing and illumination
since under such conditions the understory will be most visible and no shadows will contaminate the scene.
However, structural information to be derived from the BRDF is best obtained at o�-nadir angles where
shadow characteristic may be determined. O�-nadir angles also determine albedo.

Consequently, the following rather severe test is applied to BRDF retrieval. Inversion results are in-
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Figure 1: Angular sampling from MODIS and MISR as predicted by Xsatview (Barnsley et al., 1994) for
di�erent latitudes and days of the year 96 to 112 (in April). Shown are polar plots of view zenith (upper
part of each plot, circles) and solar zenith (lower half, diamonds) and relative azimuth, the latter having
been normalized to one semihemisphere because the BRDF models used are symmetric with respect to the
principal plane. Zero azimuth is to the right.
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Figure 2: Principal-plane inversion results for a 16-day period starting day of year 96 using the Ambrals
model. Land cover types are grasslands (top panels) and broadleaf forest (bottom panels) in the red (left
column) and the near-infrared (right column). Solid lines are the result from DOM/RTCODE, all other
lines the BRDFs retrieved at di�erent latitudes ranging from 60 degrees south to 80 degrees north from the
respective MODIS and MISR angular sampling. BRDF retrievals are shown for solar zenith angles of 0, 30
and 60 degrees, irrespective of the solar zenith angle of the observation.
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Figure 3: Selected principal-plane inversion results for a 16-day period starting day of year 96 using the
Ambrals, modi�ed RPV and modi�ed Walthall models. Solid lines are the result from DOM/RTCODE, all
other lines the BRDFs retrieved at di�erent latitudes ranging from 80 degrees south to 60 degrees north
from the respective MODIS and MISR angular sampling. BRDF retrievals are shown for the land cover
types, bands and sun zenith angles indicated for each panel, where the latter are chosen irrespective of the
solar zenith angle of observation.
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vestigated at solar zenith angles of 0, 30 and 60 degrees regardless of the solar zenith angle at which the
observations were acquired. Depending on what the angle of observation was, varying amounts of extrapola-
tion are required to derive the BRDF at 0, 30 or 60 degrees in solar zenith angle. In some cases, extrapolation
may be as much as 70 degrees (for example for day of the year 96, at latitude 60 degrees south, the solar
zenith of observation is about 70 degrees, making an extrapolation of the retrieval to a nadir illumination
angle a very severe test). However, if reciprocity holds for natural BRDFs, and if the BRDF models used
correctly re
ect the underlying physical process, the inversion for the viewing hemisphere should provide
information on the solar zenith angle dependence of the BRDF at the same time.

Figure 2 shows examples of retrievals for two di�erent land cover types, grasslands and a broadleaf forest,
and for inversions using the Ambrals model. The forward-modeled BRDF from DOM/RTCODE is shown
as solid lines for di�erent solar zenith angles in the red and near-infrared wavebands. All other lines show
retrievals for a 16-day period starting day of the year 96, chosen arbitrarily here as in other examples in
this paper, and for MODIS/MISR angular sampling at di�erent latitudes between 60 degrees south and 80
degrees north for the 3 solar zenith angles 0, 30 and 60 degrees.

Clearly, the retrieved BRDFs generally follow the forward-modeled original BRDF quite well. The
Ambrals model is capable of producing the variation in shape from one solar angle to another, and properly
adapts to the di�erences in shape between the red and the near-infrared wavebands in extrapolation of the
solar zenith angle away from that of observation. Only the extrapolations for the grasslands in the red
band seem to be running into some di�culties in cases with fairly large observation solar zenith angles, the
predictions being somewhat low and lacking the hotspot (the exact shape of which is not explicitly modeled
in Ambrals modeling since from space it rarely is sampled at all). The modi�ed RPV model also shows
this same problem, indicating that the problem is not necessarily related to the models used but that the
respective sampling does not provide the required information on exact BRDF shape. The near-infrared
retrievals and all retrievals for the broadleaf forest are good (but again, deviations seem to largest in the
red for nadir illumination), not showing any clear variation with the solar zenith angle of observation, i.e.,
with the amount of extrapolation required. The average root mean squared absolute error of all Ambrals
inversions for all cases was found to be very low, about 0.1 to 0.2 percent in the red and 0.5 to 1.6 percent
in the near-infrared, depending on the biome modeled.

These results are typical for Ambrals retrievals. Actually, the grassland retrieval in the red is one
of the worst found. Figure 3 shows four more examples for Ambrals BRDF retrieval, selected to show
di�erent typical BRDF shapes. The �gure also shows the respective retrievals for the modi�ed RPV and
modi�ed Walthall BRDF models, allowing comparisons of a few typical cases. The grasslands example
shows how the modi�ed Walthall model, being purely empirical, is sometimes not capable of producing the
right BRDF shape in situations where the two semiempirical models still function properly. The example
of broadleaf crops shows a case where the modi�ed RPV model has greater di�culties than the Ambrals
model, as is the case with the broadleaf forest (however, this is not generally the case). The behavior
of the modi�ed RPV model is better than that of the Ambrals model at zenith angles larger than about
75 degrees, where the Ambrals models begins to su�er from mathematical terms describing projections
approaching mathematically correct but unrealistically large values. The modi�ed Walthall model clearly
provides the worst BRDF retrievals in all cases. The modi�ed RPV model produces the hotspot best,
especially in the case of the needleleaf forest. In the case of broadleaf crops, notice an example of remnants
of the discretization in DOM/RTCODE in the forward-modeled result.

As illustrated by the examples given, the conclusion on BRDF retrieval is that given MODIS and MISR
combined cloudfree sampling, retrievals are generally very good, with problems occurring only on occasion.
Deviations of the retrieved from the true BRDF may be present particularly if the extrapolation in solar
zenith angle is large, the zenith angle itself is large, or the hotspot is of particular interest.

A systematic statistical analysis of bidirectional re
ectance retrieval errors across all biomes, bands and
sun angles will follow in the discussion section of this paper.



128 Wanner

4. Examples of Albedo Retrievals

Integration of the BRDF over the viewing hemisphere gives directional-hemispherical albedo, also called
black-sky albedo because the BRDF describes the re
ectance in the absence of di�use skylight (Strahler et
al., 1995; Wanner et al., 1997). Black-sky albedo is a function of solar zenith angle. The double integral
over the viewing and illumination hemispheres produces bihemispherical or white-sky albedo, a constant
describing total average re
ectance under isotropic illumination (an approximation perhaps to overcast
skies) (Strahler et al., 1995; Wanner et al., 1997). Black-sky and white-sky albedo are important parameters
to be derived from remote sensing since they describe average re
ectance properties of the surface under
di�erent angles of illumination, and represent the albedos of the extremes of a clean or clear and a strongly
turbid atmospheric condition. Surface albedos directly enter atmospheric correction algorithms and energy
budget calculations and are an important driver in climate and weather models. Their global derivation and
mapping is one of the goals of NASA's Earth Observing System.

Figure 4 shows black-sky and white-sky albedo retrieval relative errors as a function of latitude for all six
BRDF types (land cover types) studied for di�erent solar zenith angles in the red and the near-infrared, and
for a 16-day period beginning day of the year 96. Retrievals for the mean solar zenith angle of observation
are shown in the top two panels, illustrating the relative error made under prevailing illumination conditions.
The other panels show retrieval accuracies at solar zenith angles 0, 30 and 60 degrees irrespective of the
solar angle of the observations. White-sky albedo retrieval errors are shown in the bottom panels. The
shaded band marks the plus/minus 10 percent region, within which retrievals ideally should be contained.
It is important to note that all variations displayed in this �gure are due to changes in sampling geometry
alone. Clearly, a trend of error with latitude is seen, re
ecting the changes in angular sampling pattern.

With the exception of some retrievals at latitude 60 degrees south in the red band, and for �ve of the
six biomes studied, nearly all albedos are within a 10 percent margin of relative error. In many cases,
especially in the near-infrared, they are well within that margin. Errors in the near-infrared mostly show
little variation with latitude, indicating robustness against the sampling e�ects occurring. In the red, the
retrievals are relatively less stable, owing to the larger sensitivity of a small albedo to errors in re
ectance.
The retrievals for some biomes at some solar zenith angles are o� by 10 to 30 percent. But still, the bulk
of data falls within the 10 percent margin. It is interesting to note that in both bands the retrievals for
a solar zenith angle of 30 degrees show less error than the retrievals at the mean solar zenith angle of the
observations. This re
ects the fact that the models �t moderate solar zenith angles better than large ones.
Results at the prevailing solar zenith angle of observations are worse if that angle is large than when this
result is extrapolated to a smaller angle. This bodes well for deriving albedo at a standardized, typical solar
zenith angle, perhaps at 30 or 45 degrees.

White-sky albedo errors, being dependent on the accurate prediction of black-sky albedo at all solar
angles, show in many cases larger errors than the black-sky albedo retrievals at the smaller solar zenith
angles. Again, an improvement would be achieved if the model could be altered to �t BRDFs better at
large zenith angles, but the accuracies achieved are still acceptable in view of the fact that any derivation
of white-sky albedo necessarily involves a large amount of extrapolation of data in the absence of good
sampling of the solar hemisphere.

Figure 5 compares Ambrals retrieval accuracies with those for the modi�ed RPV and the modi�ed
Walthall models for a few selected cases showing typical results. The modi�ed RPV model generally shows
error patterns that are very similar to those of Ambrals, i.e., when one model has a problem the other
one does too. This indicates that the problems encountered are based on a lack of required directional
information in the angular sampling available, not in an inherent inability of the models to predict better
results. Individual examples can be found in the full data set where either the Ambrals or the modi�ed
RPV model are doing better. There is a tendency, however, for modi�ed RPV model retrievals to be more
consistent in terms of the size of the error produced. The modi�ed Walthall model generally does worse,
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Figure 4: Black-sky and White-sky albedo relative retrieval errors for a 16-day period starting day of the
year 96 using Ambrals in the red (left) and near infrared (right) wavebands as a function of latitude. Each
panel shows results for each of the six BRDF types (land cover types). Black-sky albedos were calculated
for the indicated solar zenith angles irrespective of the sun angle of observation, and at the mean sun angle.
White-sky albedo is a constant. The shaded area shows the region of a 10 percent positive or negative error.
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Figure 5: Selected black-sky and White-sky albedo relative retrieval errors for a 16-day period starting day
of the year 96 using the Ambrals, the modi�ed RPV and the modi�ed Walthall models, shown as a function
of latitude and for the selected wavebands and solar zenith angles indicated. Each panel shows results for
each of the six BRDF types (land cover types). The shaded area shows the region of a 10 percent positive
or negative error.



Retrieval Accuracies of BRDF and Albedo 131

with a pattern of errors that is noticeably distinct from those of the semiempirical models. The empirical
nature of this model clearly has a negative e�ect. By the same token, one may state that despite the very
severe approximations made in deriving both the Ambrals and the modi�ed RPV model, they do retain
physical knowledge that allows extrapolation of the BRDFs studied to solar angles away from those of the
observations. However, this �nding needs to be quali�ed somewhat by the fact that these BRDFs inverted
were derived from a numerical forward model that encorporates some of the same principles that were also
applied in the inverse modeling, although they were fully developed in the complex forward model and
strongly approximated in the simple retrieval models.

The overall conclusion, however, should be that in general albedo retrievals are possible from cloud-free
MODIS and MISR sampling if a relative error margin of about 10 percent is acceptable. Depending on the
application, this relative error will have to be quali�ed in terms of the absolute radiation contained in the
respective waveband, albedos in the near-infrared being higher but solar irradiation in that band also being
much lower than in the visible.

A systematic statistical analysis of albedo retrieval errors across all biomes, bands and sun angles will
follow in the discussion section of this paper.

5. Overall BRDF and Albedo Retrieval Accuracies

The question asked at the outset of this paper was concerned with the accuracy of BRDF and albedo retrieval
one may expect from angular sampling as will be provided by the EOS sensors MODIS and MISR. Inversions
conducted for di�erent sampling geometries, as they will occur as a function of latitude and time of year, and
for di�erent BRDF types (landcover types), show that in most cases, the values of re
ectances and albedos
can indeed be retrieved satisfactorily. Whether the errors remaining are su�ciently small depends on the
accuracy required in a speci�c application of the data. Here, they are reported to allow such an evaluation,
and to put error margins on the planned MODIS BRDF/Albedo Product, which will make use of the same
combined MODIS and MISR sampling investigated in this study.

Whereas in the previous sections example results from inversions were shown for BRDF and albedo,
an analysis of the results of the full study will now be given. Figure 6 shows the relative frequency with
which errors occur for all cases (latitudes, days of year, biomes), binned to 5-percent bins, for nadir-view
re
ectances and albedos predicted at various solar zenith angles. The most obvious thing to notice is that
the Ambrals and the modi�ed RPV model produce a rather similar histogram of error magnitudes, whereas
the modi�ed Walthall model consistently produces larger errors more frequently. Errors larger than 15
percent still occur in a considerable number of cases, especially at large solar zenith angles. This happens
despite the fact that the model has one free parameter more than the other two. Clearly, use of the modi�ed
Walthall model is not advised for best accuracy. Its main bene�t is its one-line simplicity and attractive
mathematical properties where some loss of accuracy can be accepted.

The bulk of errors for the semiempirical models is in the 10 percent range, with tails of the distribution
spreading to 15 percent in some cases. While Ambrals is doing better than the modi�ed RPV model in
some cases, for example for nadir re
ectance in the red band at all solar zenith angles, the modi�ed RPV
model is doing better in a number of other cases, most notably in the near-infrared. But these di�erences
are not very large. White-sky albedo in the near-infrared, however, is predicted much more accurately by
the modi�ed RPV model due to a tendency of the Ambrals model to overestimate it.

A di�erently summarized overview over bottom-line BRDF and albedo retrieval accuracies is given in
Table 1. For each of the three models, and for albedo and nadir-view re
ectance at various solar zenith
angles, in the red and near-infrared bands, the median relative error of retrieval is given in the center
column to identify the typical error. The numbers to either side of that column give the error margins that
encompass two thirds of the data. The two outermost respective columns give the best and the worst case
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Figure 6: Histograms of the distribution of relative errors of retrieval for nadir-view re
ectance and albedo
for the Ambrals (solid line), modi�ed RPV (dashed line) and modi�ed Walthall model (dotted line) in the
red and near-infrared. Histograms are based on data from all latitudes, all six BRDF types (biomes) and all
days of the year tested. Results were obtained for the solar angles indicated, irrespective of the solar zenith
angles of observation. Relative frequency is shown based on bins with a width of 5 percent.
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Table 1: Predicted Retrieval Accuracies: All Latitudes, Times of Year and Biome Types. Median Error,
Two-Thirds of Cases Range, and Best and Worst Error Found.

Model Band Solar Albedo Nadir Re
ectance
Zenith Percentage of Data Percentage of Data
Angle 0/6 1/6 3/6 5/6 6/6 0/6 1/6 3/6 5/6 6/6

Ambrals red �s = 0 0.0 3.7 7.5 16.0 33.2 0.0 1.1 5.5 28.7 50.1
�s = 30 0.0 2.5 4.8 11.0 24.2 0.0 1.2 5.4 14.5 41.0
�s = 60 0.0 2.3 6.0 16.0 42.6 0.0 2.1 7.9 11.9 21.8
h�siobs 0.0 1.9 4.3 9.6 39.0 0.0 0.9 3.2 8.1 13.6R
�s 0.0 1.4 5.3 14.2 31.4

nir �s = 0 0.0 0.8 3.0 6.4 17.3 0.0 0.8 6.1 13.9 38.3
�s = 30 0.0 0.6 2.5 5.4 14.4 0.0 1.3 4.6 8.8 28.7
�s = 60 0.0 2.5 5.4 8.8 19.1 0.0 1.2 5.2 9.6 15.2
h�siobs 0.0 0.5 2.0 4.9 19.9 0.0 0.7 3.3 6.6 13.2R
�s 0.0 1.6 8.1 13.4 16.7

red �s = 0 0.0 1.6 4.8 11.6 33.2 0.0 1.0 5.9 17.8 50.1
+nir �s = 30 0.0 1.2 3.7 7.6 24.2 0.0 1.2 4.9 11.6 41.0

�s = 60 0.0 2.4 5.7 12.6 42.6 0.0 1.5 6.5 11.2 21.8
h�siobs 0.0 0.9 3.1 6.7 39.0 0.0 0.8 3.3 7.1 13.6R
�s 0.0 1.5 6.0 13.8 31.4

modi�ed red �s = 0 0.0 2.2 6.3 15.4 43.2 0.0 2.4 7.2 28.2 59.8
RPV �s = 30 0.0 1.8 5.6 11.4 33.6 0.0 1.6 6.6 19.7 48.6

�s = 60 0.0 2.2 7.9 14.1 32.6 0.0 3.8 10.3 14.6 23.7
h�siobs 0.0 1.2 5.1 8.3 39.6 0.0 1.1 3.6 8.8 17.5R
�s 0.0 3.1 7.4 13.1 27.7

nir �s = 0 0.0 1.3 4.6 8.6 25.5 0.1 2.2 5.5 11.5 34.2
�s = 30 0.0 0.6 3.4 7.7 23.3 0.0 1.3 2.8 7.0 29.9
�s = 60 0.0 1.9 4.5 6.7 19.7 0.0 1.4 5.3 10.3 15.8
h�siobs 0.0 0.4 2.5 5.5 24.0 0.0 0.9 2.3 5.1 15.4R
�s 0.0 1.4 3.9 6.7 18.3

red �s = 0 0.0 1.7 5.5 12.8 43.2 0.0 2.2 6.1 20.3 59.8
+nir �s = 30 0.0 1.2 4.8 9.8 33.6 0.0 1.4 4.3 14.1 48.6

�s = 60 0.0 2.0 5.3 11.7 32.6 0.0 2.0 7.7 12.9 23.7
h�siobs 0.0 0.6 3.2 7.2 39.6 0.0 1.0 2.7 6.6 17.5R
�s 0.0 2.0 5.4 10.6 27.7

modi�ed red �s = 0 0.2 3.0 10.6 48.6 303.4 0.0 3.0 12.0 53.1 293.5
Walthall �s = 30 0.0 3.8 9.0 42.5 270.4 0.1 2.0 9.8 55.6 308.6

�s = 60 0.1 8.1 26.5 41.6 163.6 0.0 4.3 13.5 43.1 257.1
h�siobs 0.0 2.9 6.7 11.8 46.9 0.0 2.3 8.7 35.8 131.2R
�s 0.4 8.5 23.7 38.6 179.0

nir �s = 0 0.0 2.6 9.2 35.2 180.7 0.0 6.7 16.0 51.2 290.9
�s = 30 0.0 1.8 7.2 26.6 143.7 0.1 7.3 19.0 54.1 245.0
�s = 60 0.1 5.0 13.9 21.8 62.2 0.0 4.1 13.5 40.1 145.1
h�siobs 0.0 1.1 3.5 7.4 31.6 0.1 3.4 18.4 33.7 76.1R
�s 0.3 4.9 11.8 17.3 74.8

red �s = 0 0.0 2.8 9.8 42.6 303.4 0.0 4.9 13.5 53.1 293.5
+nir �s = 30 0.0 2.6 8.2 35.4 270.4 0.1 3.2 14.5 54.2 308.6

�s = 60 0.1 6.2 18.1 34.7 163.6 0.0 4.3 13.5 40.5 257.1
h�siobs 0.0 1.6 5.0 10.2 46.9 0.0 3.0 14.5 34.8 131.2R
�s 0.3 6.1 14.9 33.7 179.0
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Table 2: Summary of Predicted Retrieval Accuracies: All Latitudes, Times of Year, Biome Types and Solar
Zenith Angles, Irrespective of the Sun Zenith Angle of Observation. Median and Two-Thirds of Cases Range,
the Ranges Being With Respect to Solar Zenith Angle.

Model Albedo Nadir Re
ectance

Ambrals 2.0{8.1 (0.5{16.0) 3.2{7.9 (0.7{28.7)
mod. RPV 2.5{7.9 (0.4{15.4) 2.3{10.3 (0.9{28.2)
mod. Walthall 3.5{26.5 (1.1{48.6) 8.7{19.0 (2.0{55.6)

Table 3: Summary of Predicted Retrieval Accuracies as a Function of Cloud Probability: All Latitudes,
Biome Types and Solar Zenith Angles for a 16-Day Time Period Beginning Day of Year 96, Irrespective
of the Sun Zenith Angle of Observation. Median and Two-Thirds of Cases Range, the Ranges Being With
Respect to Solar Zenith Angle.

Prob. of Cloud Albedo Nadir Re
ectance

0 % 2.0{7.8 (0.7{18.4) 3.2{9.2 (0.4{31.4)
25% 1.9{8.0 (0.8{17.9) 3.2{9.0 (0.5{30.8)
50 % 2.3{8.1 (0.7{18.6) 3.1{9.2 (0.7{31.2)
75 % 3.1{9.0 (0.7{18.7) 2.6{9.3 (0.7{29.6)

found in the whole set. Table 2 in turn summarizes Table 1 to allow a quick overview over the tendencies
found. It lists the range of median errors found, the variation being with respect to sun angle, and the
lowest and highest delimiters of the two-thirds of cases range at the di�erent solar zenith angles for each of
the three models.

It is clear from these numbers than the Ambrals and modi�ed RPV models are doing similarly well.
Ambrals retrievals seem to be slightly better, but not by much. The accuracy of albedo retrieval is between
2 and 8 percent for both models, that of nadir-view re
ectance between 3 and 8 percent for the Ambrals
model and between 2 and 10 percent for the modi�ed RPV model. But in cases with retrieval problems
(not the worst cases, but typical bad cases), errors can amount to some 30 percent for the modi�ed RPV
model where they are typically only some 15 percent for the Ambrals model. The modi�ed Walthall model
is clearly inferior in terms of retrieval accuracy. The median accuracy of albedo retrieval is between 4 and 26
percent, with typical problematic cases ranging to 50 percent in error, and nadir-view re
ectance is retrieved
to within only 9 to 19 percent, bad cases being o� by up to 60 percent typically.

The accuracies given in Tables 1 and 2 are bottom-line accuracies calculated for full sampling in the
absence of clouds. A careful study is required to assess how these accuracies change when observations are
lost to clouds, and what impact errors in aerosol retrieval and atmospheric correction have. Only then will
the picture be complete. However, in order to provide some idea of the stability of the inversions performed
in this study and the relevance of the numbers found, Table 3 gives some results for the Ambrals model and
a 16-day period beginning day of the year 96, using all six BRDF types (land cover types), all latitudes,
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and the red and the near-infrared bands. The probability of an observation to be lost due to cloudiness
was set in turn to 0, 25, 50 and 75 percent. Five realizations of each case were computed. In each of these,
the number of observations varied, as did which observations were dropped, but the average number was
close to three quarters, half, and one quarter of the full set. Observations were randomly dropped even
though MISR observations are most likely to be dropped in multiples of 9 if they are dropped (since the
multiangular observations are acquired simultaneously, which is not the case for MODIS). Inversions were
preformed on each case and the error ranges given in Table 3 computed.

Table 3 shows that neither albedo retrieval errors nor nadir re
ectance retrieval errors change much even
when three quarters of all observations are dropped. The reason for this is that the most important factor
in the inversions is not the number of observations but the range of angles they cover, which is mostly not
a�ected by random dropouts of observations. The sensitivity of retrievals to various types of noise-like e�ects
in the observations will grow as the number of observations drops, but a study by Wanner et al. (1996) and
Lewis and Wanner (1997) has shown that noise sensitivity of Ambrals retrievals is rather good for combined
MODIS and MISR sampling, noise mostly not being ampli�ed into the BRDFs and albedos retrieved even
with a loss of observations to clouds.

Consequently, it is safe to say that loss of observations to clouds are not a limiting factor with respect
to the MODIS observations. And since at least two opportunities for a MISR observation occur in a 16-day
time period, in most cases actual MODIS/MISR sampling should be even better than obtained from the
computed random loss. With some caution, the bottom-line accuracies derived in this study may be taken
as a preliminary indication of expected product accuracy of the MODIS BRDF/Albedo Product. Table 1
and Figure 6 give the full details.

6. Discussion and Conclusions

A word of caution is due with respect to the fact that this study was conducted in form of a model-to-model
comparison. Since angular sampling has such a particular in
uence in the values retrieved, it is important
to study retrieval accuracies using the actual sampling, not principal-plane sampling or cross-principal plane
sampling, even though those too may give an indication of what is achievable. In the absence of the actual
instruments, this makes necessary a study using simulation, such as this one, allowing to explore the full
range of occurring situations. However, if an inverse model is not capable of producing good results, the
reason may be sought with either the inverse model or the forward model. Particularly, deviations of the
inverse from the forward model at large zenith angles, where theories involving projections are most likely to
be overly idealistic, may be caused by either model. It would be wrong to necessarily construct the inversion
models in such a way that it absolutely follows the forward model. Furthermore, in this study the forward
model itself may have had some problems, for example due to the discreteness of the numerical scheme
used. The BRDFs from DOM/RTCODE are rather similar across the biomes, either re
ecting a similarity
in the theories used for the di�erent biomes or re
ecting a general similarity in natural BRDFs once both
shadowing and radiative transfer-type scattering are both taken into account at all levels.

However, it should also be pointed out that even after the MODIS and MISR instruments are operational,
it will be very di�cult to replace these error estimates from simulation with values actually measured. Any
validation e�ort will necessarily be limited in the range of conditions covered, will have to deal with severe
problems of scaling between local observations and the size of the sensor footprints (e�ectively one kilometer
for the MODIS BRDF/Albedo Product), and be convolved with other uncertainties, stemming for example
from di�erences in the spectral response or calibration of the ground and the space instruments. Most
accuracies considered in this study are in the range of a few percent, which to detect requires excellent
accuracy in the �eld.

In conclusion, it seems from this investigation that it is probable that BRDF and albedo will be retrievable
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with reasonable accuracy from MODIS and MISR observations using either the Ambrals or the modi�ed
RPV model. Typical errors will be below 10 percent. It is good that the MISR BRDF/Albedo Product
will be based on the modi�ed RPV model while the MODIS BRDF/Albedo Product will use the Ambrals
model, as both models are capable of producing reliable results and using both models in di�erent products
will maximize the material generated from which conclusions can be drawn. The resulting BRDFs and
albedos can be assembled into databases that integrate knowledge over time, further minimizing the error
involved. These databases may then serve for a characterization of the radiative state of the Earth's surface
for biophysical, climate and weather modeling.
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Abstract

The sensitivity of the Ambrals semiempirical BRDF model to random noise in observed multiangular re-

ectances is investigated. The mathematical properties of kernel-driven BRDF models allow to derive
analytically so-called weights of determinations or noise in
ation factors that quantify the expected noise
found in retrieved parameters like nadir-view re
ectance or albedo at various solar zenith angles, or in the
BRDF model parameters. The study is carried out using simulated angular sampling as is to be expected
from the MODIS and MISR instruments to be 
own on the EOS-AM platforms as a function of latitude,
day of year and sampling period. A similar study is carried out for comparison using the modi�ed RPV
BRDF model. Results show that for both models the retrieved parameters re
ectance and albedo the noise
ampli�cation factors are less than one (less noise present than was in the original data, i.e., the retrievals are
stable with respect to random noise). The BRDF model parameters themselves, especially for the modi�ed
RPV model, are found to be more susceptible to noise. Di�erences in noise sensitivity between di�erent
model variants and sampling scenarios are further explored. This study is relevant with respect to the re-
liability to be expected from the planned operational BRDF/albedo products from the MODIS and MISR
instruments.

1. Introduction

Global space-based retrievals of the bidirectional re
ectance distribution function (BRDF) and albedo over
land will be possible in the near future using the Earth Observing System's (EOS) MODIS and MISR sensors
or the POLDER instrument. BRDF information is useful for normalizing satellite-acquired data sets and
for deriving key surface parameters, mainly atmospherically corrected albedo for use in climate studies.

Little work, however, has been done on the sensitivity of BRDF and albedo retrievals to angular sampling
patterns even though the impact of these on product accuracy is possibly substantial. With any instrument,
the angular distribution of samples obtainable in a given time period will vary with geographic latitude and
time of year, and be also determined by instrument and orbit characteristics. Cloud masking will further
reduce the set of available angular re
ectances. In this paper we evaluate in a practical case the impact of
angular sampling e�ects on BRDF and albedo derivation.

Two e�ects mainly have an in
uence on retrieval accuracy as a function of angular sampling:
(1) Sensitivity to random noise. Analysis is carried out under the assumption that the RMSE found in
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inverting a model against observations is due to random \noise-like" errors in the observed re
ectances, due
for example to 
uctuations in surface properties, misregistration, atmospheric correction errors etc.
(2) Mis�t sensitivity. Analysis is carried out under the assumption that the RMSE found in inversion is
due to an inherent partial inability of the model used to �t the observations even in the absence of \noise",
and to infer completely from limited angular sampling the BRDF shape observed. Investigating this e�ect
is important in view of the many assumptions that are commonly made in operationally feasible BRDF
models.

In this paper, we focus on the noise sensitivity analysis alone, although the mis�t analysis is of equal
importance. We study the behavior of the semiempirical Ambrals BRDF model (Wanner et al., 1995, 1997)
under conditions of sampling by MODIS and MISR, and how the semiempirical Rahman model (Rahman
et al., 1993) behaves under the same circumstances.

2. The Experiment

We here investigate sampling e�ects with respect to the MODIS BRDF/albedo product (Strahler et al.,
1996; Wanner et al., 1997), using the sampling patterns and BRDF models characterizing it. The product
is slated for production at a spatial resolution of one kilometer once every 16 days and in seven spectral
bands from combined MODIS-AM and MISR data starting in 1998. The MODIS-AM sensor is an across-
track imager with a swath width of 2330km, and a repeat rate shorter than 2 days (mostly shorter than
1 day). MISR is an along-track imager with a swath width of 364km using four fore-, four aft- and one
nadir-pointing camera. The two-look repeat rate is 16 days. In this time, each sensor produces a string of
observations across the viewing hemisphere with rather constant relative azimuth and solar zenith angles.
The two strings from the two instruments are nearly orthogonal; their respective azimuthal distance from
the principal plane varies with latitude and time of year, as does the mean solar zenith of the observations
and the number of observations from MODIS.

The analysis was carried out for the Ambrals BRDF model that will be used in the production of the
MODIS BRDF/albedo product. The kernel combinations used in that model are: RossThick-LiSparse,
RossThin-LiSparse, RossThin-LiDense, and RossThick-LiDense (Wanner et al., 1995). These are capable of
modelling a wide variety of volume and surface scattering behavior and which will be employed depending
on the scattering behavior observed.

Retrievals investigated are for nadir-view re
ectance and directional-hemispherical (\black-sky") albedo.
Both of these quantities are studied for retrievals at the mean sun angle of the observations (\interpolation")
and for nadir sun zenith angle (\extrapolation", the amount of extrapolation depending on the sun angle
of observations, which depends on the latitude and the time of year of the observations). Additionally,
bihemispherical albedo (\white-sky albedo") is studied.

MODIS and MISR sampling was simulated using the Xsatview software (Barnsley et al., 1994). The
viewing and illumination geometries were constructed for 9 latitudes between 80 degrees south and 80 degrees
north, and for 8 di�erent 16-day time periods throughout the year.

3. Noise Sensitivity of the Ambrals Model

3.1. Method

The behavior of kernel-driven linear models under the conditions of limited and varying angular sampling
can be studied analytically due to the mathematical form of these models. It is given by the the so-called
\weights of determination", calculated using theory that originates with Gauss (Whittaker and Robinson,
1960). Kernel-driven models give the re
ectance R in form of a sum, R =

P
fiki, where fi are the model
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parameters and ki are mathematical functions (\kernels") giving basic BRDF shapes depending only on
sampling geometry.

The theory of least squares and related statistical analyses permit the derivation of unbiased estimates
of model parameters and linear combinations of model parameters (such as re
ectances at given angles and
albedos for kernel-driven models). The techniques also directly provide estimates of the variance in these
quantities. An overview of the relevant tools for analysis is provided below, but it is worth �rst considering
the nature of \error" in this context. The theory used here and that used in most model inversions in the
�eld of BRDF modelling is based on the assumption that the model is suitable for modelling the re
ectance
at some given location on the globe. Thus, if a model is \�tted" (in the sense of providing unbiased estimates
of the model parameters) to a set of sample observations, then the model should be capable of predicting
the re
ectances (or derived quantities such as albedo-related terms) at viewing and illumination angles
other than those sampled. The theory assumes that any deviation from a perfect �t in an over-constrained
case (number of samples larger than number of model parameters) is due to error in observation. Related
statistical theory tends to assume further that the variation in re
ectance at each observation angle is
normally distributed and of equal variance over the re
ectance function (if the variance of the re
ectance
varies in some predictable way over the observation angles, this can be taken into account by weighting the
observations). The \error" in a model �t term which is minimized in \�tting" the model, the root mean
squared error (RMSE), provides an estimate of this variance in observation. Such 
uctuations may indeed
arise, due, for example, to uncertainty in atmospheric correction, registration or resampling. Some of these

uctuations may cause normally distributed variation in the data, and others, such as poor speci�cation of
the atmospheric intrinsic path radiance, may cause bias. The former is well-treated in the approach followed
in this paper, and the latter may be taken into account in describing the additional expected error if an
estimate of the bias is produced.

The key to understanding the behavior of kernel-driven linear models in the presence of random noise in
the observed data under the conditions of limited and varying angular sampling is the variation of the so-
called \weights of determination" of the model parameters, derived re
ectances and derived albedo measures
found from model inversion. These weights allow an estimation of the expected error in the terms under
consideration, which can be expressed as (Whittaker and Robinson, 1960)

�u = e

s
1

wu
; (1)

where e is the estimate of standard error in the observed data (approximated by the RMSE in model �tting),
and 1=wu is the weight of determination of term u under the sampling con�guration considered. The weight
of determination is formed through

1

wu
= [U ]T [M�1][U ]; (2)

where U is a vector composed of the weighting of the kernels in some linear combination of the kernels
which results in the term u under consideration, and M�1 is the inverse matrix providing the solution of
the least-squares inversion problem for the linear model.

For example, to obtain the weight of determination of the parameter f
0
= fiso of a kernel-driven model,

[U ]T = (1; 0; 0). The weight of determination of directional-hemispherical re
ectance at solar zenith angle
�s is formed from [U ]T = (1; k

1
(�s); k2(�s)), where ki are the respective directional-hemispherical integrals

of the kernels used. The weight of determination of bihemispherical re
ectanc is formed from [U ]T =

(1; k
1
; k

2
), where two bars tand for the respective bihemispherical integral. The weight of determination

of the re
ectance at some combination of viewing and illumination angles, (�v ; �s; �), is given by forming
[U ]T = (1; k

1
(�v ; �s; �); k2(�v ; �s; �)).

The weight of determination depends on the sampling scheme under consideration because M�1 depends
on it. The weight of determination also depends on the number of samples, N , and contains the factor 1=

p
N .
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Increasing N decreases the expected error because the errors are assumed to be randomly distributed at
each observation angle. Thus, we can already begin to understand that factors such as cloud cover, which
will reduce N from the maximum ideal number considered in this study to N 0, will tend to increase the
expected error even if the angular distribution of samples remains roughly the same. The increase in each
term under consideration is given by

p
N=N 0.

Note that this analysis is independent of any speci�c BRDF function.

3.2. Results for the Ambrals Model

In an extensive investigation, we have studied the sensitivity to random noise of the several Ambrals BRDF
model variants listed above using sampling for a variety of combinations of the MODIS and MISR sensors,
and for di�erent periods of data accumulation. Table 1 lists the weights of determination found for albedo
and nadir view re
ectance retrieval in interpolation and extrapolation for the di�erent Ambrals model kernel
combinations. Nearly all numbers are smaller than 1, indicating stability with respect to noise ampli�cation
in deriving the respective quality.

Table 2 investigates median error ranges (the ranges re
ecting variations with kernel combination used;
the median being with respect to latitude and day of year) for di�erent sampling scenarios using MODIS
and MISR on the EOS-AM-1 platform and MODIS on the PM platform. The MISR BRDF/albedo product,
which will be produced using the BRDF model by Rahman et al. (1993), will be based on a 9-day sam-
pling period, whereas the MODIS BRDF/albedo product will be built from data acquired during 16-day
periods. Since the RossThick and LiDense kernels are least independent in their angular characteristics,
the RossThick-LiDense kernel combination is most susceptible to noise of all combinations. Therefore, we
list results separately for using this combination and for using those kernels separately along with the other
kernel combinations. The lower part of the table lists relative changes in accuracy of the di�erent sampling
schemes as measured against the combined MODIS and MISR 16-day sampling.

Table 2 shows that albedo and nadir-view re
ectance may be stably retrieved both in interpolation and
extrapolation of the solar zenith angle. This is also true for 9-day MISR sampling, showing that MISR
angular sampling is very suitable for these retrievals. Using MODIS alone introduces susceptibility to
noise that is not desired. The MODIS-PM instrument is a partial, but not a full substitute for the MISR
instrument, the advantage of MODIS-PM being, however, that it will feature the same 7 land-designated
spectral bands as the MODIS-AM instrument, whereas MISR has only 4 bands.

Table 3 lists the worst-case ranges of the noise sensitivities found. \Worst-case" refers to the most
unfavorable choice of kernel combination; the numbers given are the range numbers that include two thirds
of the data for all latitudes and times of year.

Figure 1 shows the weights of determination found for the di�erent retrievals when using the RossThick-
LiSparse model, chosen as a typical example. Curves represent di�erent days in the �rst half of the year.
Panel (f) shows the error expected when extrapolating black-sky albedo in sun zenith angle for di�erent
latitudes and sampling in the �rst 16-day period of the year. One can see that extrapolation towards nadir
is less problematic than extrapolation to large zenith angles for all latitudes, the beginning of the rise being
determined by the sun zenith angle at which the observations were made.

Overall, the noise sensitivity of the Ambrals BRDF model with respect to BRDF and albedo retrieval at
the sun zenith angles investigated is such that in the absence of clouds noise-like e�ects in the observations
lead to a usually much smaller error in the derived quantities than was present in the re
ectances. Under
conditions where observations will be lost to clouds, the sensitivity will increase, but the noise in
ation
factor will still be mostly smaller than unity.

Figure 2 shows the noise sensitivity of the model parameters themselves (note that the isotropic parameter
is identical with nadir-view, nadir-sun re
ectance, shown in Figure 1). They are more susceptible to noise
than the derived quantities due to possible tradeo�s between parameter values that do not a�ect, for example,
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the value of albedo. This means that while albedo and re
ectance retrievals are robust, interpretation of
the model parameters themselves, desired with respect to correlating them with land cover types, is more
problematic. See also the numbers in Tables 1, 2 and 3.

4. Noise Sensitivity of the modi�ed RPV model

The noise sensitivity of the RPV BRDF model by Rahman et al. (1993) as modi�ed by Martonchik (Engelsen
et al., 1996) was also investigated for comparison and in order to reveal whether the properties found are
related to the Ambrals model in particular or whether they might pertain to 3-parameter models in general.

The modi�ed RPV model is not fully linear, making the analytical investigation of noise sensitivity along
the lines of the Ambrals BRDF model impossible. However, an equivalent weight of determination may be
constructed from the RMSE and the variation found in the derived quantity, albedo or re
ectance. This was
done by computing 250 realizations of noisy data for each of 5 magnitudes of noise up to 5 percent absolute
of the re
ectance (keeping the resulting re
ectance is non-negative).

Due to the nonlinear nature of the modi�ed RPV model, the analysis will also depend on land cover
type and wave band. The analysis was carried out for the red and the near-infrared using four di�erent data
sets measured by Kimes (1983) and Kimes et al. (1985, 1986), namely BRDF observations of corn, a plowed
�eld, a hardwood forest and a grass lawn. These represent four types of BRDFs, a broadleaf crop, a barren
scene, a forested scene, and a grass-like land cover.

Table 4 gives ranges of the inferred equivalent weights of determination. Numbers are similar to those
found for the Ambrals BRDF model, showing that both models do a good job in the stability of the retrievals
with respect to random noise.

Figure 3 shows red and near-infrared weights of determinations as a function of latitude for a 16-day
period beginning the �rst day of the year for the four land cover types used (solid and dotted lines). Also
given is the result for the RossThick-LiSparse Ambrals model kernel combination (dashed line), showing
that where one model has increased sensitivity to noise the other one does, too.

Figure 2 shows the sensitivity of the three modi�ed RPV model parameters. The second and third
parameters, the two describing BRDF shape, are extremely susceptible to noise. This does not translate to
noisy retrievals of re
ectance and albedo, but will make very di�cult using and interpreting them directly.
The cause of this sensitivity is probably internal redundancy in the way these parameters a�ect overall BRDF
shape, perhaps caused by the hotspot term the model contains that allows tradeo�s between parameters
under limited angular sampling. However, since the model retrieves albedo and re
ectance very well, this
does not constitute a major problem in terms of physical quantities to be retrieved.

A more detailed investigation is under way.

5. Conclusions

Retrievals of BRDF and albedo using the Ambrals BRDF model is stable against random noise-like variations
in the re
ectances used that may be due for example to 
uctuations in surface properties, misregistration,
atmospheric correction errors etc. This holds both for retrieval of BRDF and albedo at the mean sun
angle of observation and for extrapolation of the retrieval to a nadir sun zenith angle. Where the Ambrals
BRDF model shows increased susceptibility to noise, the modi�ed RPV model does, as well, indicating
that the source of the problem lies in the geometric distribution of angular samples available, not with the
model. Generally, the modi�ed RPV model is as capable of retrieving BRDF and albedo from MODIS
and MISR sampling as the Ambrals BRDF model. The respective model parameters themselves are more
noisy than the derived quantities BRDF and albedo for both models, but much more so for two of the three
parameters of the modi�ed RPV model. In terms of using di�erent instruments for sampling, a combination
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of MODIS and MISR leads to excellent retrievals in terms of noise sensitivity. Using MISR only is also
feasible. Using MODIS alone may represent a problem due to the less favorable angular sampling properties
of this instrument.
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Table 1: Weights of Determination for MODIS-AM/MISR 16-Day Sampling: Typical Small,

Median and Large Error for Different Kernel-Driven BRDF Models

MODIS{AM+MISR
16-Day Sampling kernel 1 kernel 2 low median high low median high

Nadir-View Re
ectance Black-Sky Albedo

Interpolation RossThin 0.17 0.21 0.24 0.14 0.17 0.19
�s = h�si RossThick 0.17 0.18 0.21 0.12 0.16 0.17

LiSparse 0.14 0.19 0.25 0.13 0.17 0.18
LiDense 0.15 0.18 0.19 0.12 0.16 0.18
RossThin LiSparse 0.18 0.23 0.27 0.14 0.17 0.19
RossThin LiDense 0.17 0.22 0.24 0.15 0.18 0.20
RossThick LiSparse 0.18 0.23 0.28 0.13 0.17 0.18
RossThick LiDense 0.17 0.19 0.22 0.13 0.16 0.18

Extrapolation RossThin 0.19 0.23 0.25 0.15 0.17 0.19
�s = 0 RossThick 0.16 0.17 0.19 0.16 0.18 0.21

LiSparse 0.38 0.44 0.53 0.16 0.18 0.28
LiDense 0.48 0.62 0.71 0.18 0.21 0.28
RossThin LiSparse 0.38 0.45 0.55 0.16 0.18 0.33
RossThin LiDense 0.73 0.93 1.08 0.19 0.28 0.49
RossThick LiSparse 0.40 0.46 0.55 0.17 0.21 0.36
RossThick LiDense 1.03 1.35 1.71 0.39 0.52 0.63

White-Sky Albedo

Global,
R
�sd�s RossThin 0.14 0.31 0.64

RossThick 0.14 0.18 0.34
LiSparse 0.18 0.30 0.43
LiDense 0.13 0.17 0.23
RossThin LiSparse 0.19 0.36 0.64
RossThin LiDense 0.21 0.42 0.82
RossThick LiSparse 0.19 0.34 0.58
RossThick LiDense 0.16 0.36 1.05

Parameter fvol Parameter fgeo

Parameters RossThin 0.04 0.14 0.25
RossThick 0.32 0.89 1.74
LiSparse 0.18 0.27 0.31
LiDense 0.34 0.46 0.57
RossThin LiSparse 0.05 0.15 0.30 0.19 0.28 0.36
RossThin LiDense 0.07 0.17 0.29 0.45 0.60 0.69
RossThick LiSparse 0.33 0.89 1.76 0.20 0.27 0.31
RossThick LiDense 0.62 1.86 4.14 0.60 0.86 1.34
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Table 2: Median Weights of Determination for Different EOS Sensor Combinations: Small-

est and Largest Median Error, and Percentage Deviation From MODIS-MISR Sampling

MODIS-AM/ MISR MODIS-AM MISR MODIS- MODIS-AM/
MISR AM/PM /PM/MISR
16{day 9{day 16{day 16{day 16{day 16{day

Models: All 3-Parameters Models

Interpolation Rnad 0.19{0.23 0.27{0.30 0.35{0.40 0.26{0.31 0.20{0.23 0.13{0.16
�s = h�si bsa 0.16{0.18 0.21{0.25 0.32{0.55 0.21{0.21 0.18{0.29 0.11{0.14

Extrapolation Rnad 0.45{1.35 0.61{2.00 1.17{6.61 0.58{1.49 0.67{3.50 0.36{1.11
�s = 0 bsa 0.18{0.52 0.25{0.71 0.33{2.54 0.25{0.63 0.19{1.32 0.13{0.43

Global,
R
�sd�s wsa 0.34{0.42 0.42{0.56 0.99{1.60 0.34{0.42 0.55{0.95 0.27{0.38

Parameters fvol 0.15{1.86 0.22{2.45 0.39{7.23 0.16{1.84 0.23{4.20 0.12{1.65
fgeo 0.27{0.86 0.37{1.22 0.68{4.56 0.28{0.88 0.39{2.43 0.22{0.77

Models: All 3-Parameter Models, with Ross-Thick/Li-Dense replaced by Ross-Thick and Li-Dense separately

Interpolation Rnad 0.18{0.23 0.25{0.30 0.30{0.40 0.23{0.31 0.17{0.23 0.12{0.16
�s = h�si bsa 0.16{0.18 0.21{0.25 0.25{0.55 0.20{0.21 0.15{0.29 0.10{0.14

Extrapolation Rnad 0.17{0.93 0.24{1.24 0.28{3.45 0.23{1.09 0.16{1.94 0.12{0.77
�s = 0 bsa 0.18{0.28 0.25{0.37 0.29{0.82 0.24{0.36 0.17{0.45 0.12{0.23

Global,
R
�sd�s wsa 0.17{0.42 0.23{0.56 0.31{1.60 0.21{0.42 0.18{0.95 0.12{0.38

Parameters fvol 0.15{0.89 0.22{1.25 0.39{2.01 0.16{0.97 0.23{1.19 0.12{0.73
fgeo 0.27{0.60 0.37{0.86 0.68{2.32 0.28{0.63 0.39{1.28 0.22{0.49

Models: All 3-Parameter Models, with Ross-Thick/Li-Dense replaced by Ross-Thick and Li-Dense separately

Interpolation Rnad 0, 0 +38, +30 +66, +73 +27, +34 {6, 0 {34, {31
�s = h�si bsa 0, 0 +31, +38 +56, +205 +25, +16 {7, +61 {38, {23

Extrapolation Rnad 0, 0 +41, +33 +64, +270 +35, +17 {6, +108 {30, {18
�s = 0 bsa 0, 0 +38, +32 +61, +192 +33, +28 {6, +60 {34, {18

Global,
R
�sd�s wsa 0, 0 +35, +33 +82, +280 +23, 0 +5, +126 {30, {10

Parameters fvol 0, 0 +46, +40 +160, +125 +6, +8 +53, +33 {20, {18
fgeo 0, 0 +37, +43 +151, +286 +3, +5 +44, +113 {19, {19

Rnad = re
ectance at nadir view angle; bsa = black-sky albedo; wsa = white-sky albedo; fvol = volume scatter-
ing kernel coe�cient; fgeo = surface scattering kernel coe�cient.
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Table 3: Ranges of Weights of Determination for Different EOS Sensor Combinations:

Smallest and Largest Error in the Worst Case, and Percentage Deviation From MODIS-

MISR Sampling

MODIS{AM MISR MODIS{AM MISR MODIS{ MODIS{AM
+ MISR AM+PM +PM+MISR
16{day 9{day 16{day 16{day 16{day 16{day

Models: All 3-Parameter Models

Interpolation Rnad 0.18{0.28 0.25{0.36 0.29{0.54 0.25{0.38 0.17{0.28 0.12{0.18
�s = h�si bsa 0.15{0.20 0.20{0.29 0.40{0.72 0.17{0.24 0.23{0.41 0.12{0.15

Extrapolation Rnad 1.03{1.71 1.45{2.41 2.95{9.59 1.12{2.23 1.61{5.44 0.90{1.51
�s = 0 bsa 0.39{0.63 0.53{0.94 0.80{4.01 0.51{0.76 0.45{1.95 0.29{0.61

Global,
R
�sd�s wsa 0.21{1.05 0.28{1.47 0.76{2.90 0.24{1.74 0.47{1.43 0.17{0.81

Parameters fvol 0.62{4.14 0.87{5.83 2.97{13.07 0.68{7.11 1.63{6.60 0.52{3.10
fgeo 0.60{1.34 0.87{1.84 2.01{7.07 0.62{1.88 1.18{3.56 0.56{1.06

Models: All 3-Parameter Models, with Ross-Thick/Li-Dense replaced by Ross-Thick and Li-Dense separately

Interpolation Rnad 0.18{0.28 0.25{0.36 0.29{0.44 0.25{0.38 0.17{0.25 0.12{0.18
�s = h�si bsa 0.15{0.20 0.20{0.29 0.40{0.72 0.17{0.24 0.23{0.41 0.12{0.15

Extrapolation Rnad 0.73{1.08 0.96{1.58 1.47{5.72 0.77{1.54 0.86{3.18 0.60{1.05
�s = 0 bsa 0.19{0.49 0.25{0.66 0.30{2.54 0.26{0.57 0.17{1.47 0.13{0.43

Global,
R
�sd�s wsa 0.21{0.82 0.28{1.11 0.66{2.42 0.24{0.92 0.40{1.41 0.17{0.67

Parameters fvol 0.33{1.76 0.48{2.48 1.21{3.52 0.37{3.28 0.72{1.97 0.28{1.08
fgeo 0.45{0.69 0.62{0.95 0.99{3.73 0.47{0.98 0.58{1.99 0.40{0.59

Models: All 3-Parameter Models, with Ross-Thick/Li-Dense replaced by Ross-Thick and Li-Dense separately

Interpolation Rnad 0, 0 +38, +28 +61, +57 +38, +35 {6, {11 {34, {36
�s = h�si bsa 0, 0 +33, +44 +166, +259 +13, +19 +53, +104 {20, {26

Extrapolation Rnad 0, 0 +31, +46 +101, +429 +5, +42 +17, +194 {18, {3
�s = 0 bsa 0, 0 +31, +34 +57, +418 +36, +16 {11, +200 {32, {13

Global,
R
�sd�s wsa 0, 0 +33, +35 +214, +195 +14, +12 +90, +71 {20, {19

Parameters fvol 0, 0 +45, +40 +266, +100 +12, +86 +118, +11 {16, {39
fgeo 0, 0 +37, +37 +119, +440 +4, +42 +28, +188 {12, {15

Rnad = re
ectance at nadir view angle; bsa = black-sky albedo; wsa = white-sky albedo; fvol = volume scatter-
ing kernel coe�cient; fgeo = surface scattering kernel coe�cient.
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Table 4: Inferred Equivalent Weights of Determination for the modified RPV model: Small-

est and Largest Median Error, and Smallest and Largest Error in the Worst Case

MODIS{AM/MISR Red Band NIR Band
16-Day Sampling median worst-case range median worst-case range

Interpolation Rnad 0.21{0.28 0.20{0.31 0.19{0.22 0.16{0.26
�s = h�si bsa 0.08{0.16 0.14{0.18 0.04{0.06 0.05{0.09

Extrapolation Rnad 0.32{0.49 0.38{0.76 0.31{0.49 0.38{0.76
�s = 0 bsa 0.11{0.20 0.17{0.39 0.08{0.13 0.07{0.33

Global,
R
�sd�s wsa 0.19{0.23 0.16{0.49 0.17{0.19 0.10{0.36

Parameters r0 0.17{0.29 0.23{0.51 0.16{0.25 0.19{0.47
k 1.70{9.86 4.37{15.25 0.89{1.41 0.98{2.00
w1 3.12{12.12 5.96{28.20 1.15{2.71 1.70{4.02

Land cover types (Kimes et al.): Corn, Lawn, Plowed Field, Hardwood Forest

Rnad = re
ectance at nadir view angle; bsa = black-sky albedo; wsa = white-sky albedo; r0 = base re
ectance
coe�cient; k = BRDF slope coe�cient; w1 = forward/backward scattering coe�cient.
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Figure 1: Noise sensitivity of the Ambrals BRDF model using the example of the RossThick-LiSparse kernel
combination. Weights of determination (\Noise in
ation factors", NIF) are shown as a function of latitude
for di�erent 16-day time periods throughout the �rst half of the year. Panel (f) shows the noise sensitivity
of black-sky albedo extrapolation as a function of sun zenith angle for di�erent latitudes and for sampling
during the �rst 16-day period of the year.
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Figure 2: Noise sensitivity of the model parameters for the Ambrals BRDF model using the example of
the RossThick-LiSparse kernel combination and the modi�ed RPV BRDF model. Weights of determination
(\Noise in
ation factors", NIF) are shown as a function of latitude; for the Ambrals model they are shown for
di�erent 16-day time periods throughout the �rst half of the year, for the modi�ed RPV model for sampling
of the �rst of these 16-day periods and for the red and near-infrared band of four di�erent land cover types
(Ambrals model analysis is independent of band or land cover type due to the mathematical properties of
kernel-driven models).
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Figure 3: Noise sensitivity of the modi�ed RPV BRDF model. Inferred equivalent weights of determination
(\Noise in
ation factors", NIF) are shown as a function of latitude for the �rst 16-day period of the year and
for the red and near-infrared band of four di�erent land cover types (solid and dotted lines). Also shown is
are the weights of determination for the Ambrals BRDF models using the example of the RossThick-LiSparse
kernel combination (dashed lines).
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APPENDIX D:

THE SENSITIVITY OF ATMOSPHERIC CORRECTION OF RE-

FLECTANCES TO THE SURFACE BRDF (PAPER BY HU, WAN-

NER AND STRAHLER)
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Abstract

This paper systematically studies the relationship between surface BRDF (Bidirectional Re
ectance
Distribution Function) retrieval and atmospheric correction. The study uses the atmospheric correction
scheme of the Moderate Resolution Imaging Spectroradiometer (MODIS), and angular sampling expected
for MODIS and MISR (Multiangle Imaging Spectro-Radiometer) for di�erent land cover types and optical
depths of aerosols. The results show the following two points. 1). Even for a non-turbid atmosphere, the
assumption of a Lambertian surface in atmospheric correction causes large errors in the retrieved surface
re
ectances, such as from 1:7% to 7:6% in the red band. Thus, it is necessary to consider the surface
anisotropic BRDF in atmospheric correction. 2). Surface BRDF retrieval and atmospheric correction can
be coupled in a converging iteration loop, which improves the quality of atmospheric correction and of
subsequent BRDF retrieval. For example, performing two steps of the iteration loop is already su�cient
to obtain a mean error of only 0:89% in the retrieved surface re
ectances for the atmosphere with the
aerosol optical depth of 0:4 in the red band.

1. INTRODUCTION

In the solar spectrum, the signal received by a remote sensor doesn't re
ect the true re
ectance charac-
teristics of surface objects, due to atmospheric e�ects. Thus, it is necessary to remove atmospheric e�ects
in remote sensing applications.

Atmospheric e�ects on upward radiance for a cloudless sky can be computed as a solution to the at-
mospheric radiative transfer (RT) equation. The re
ectance properties of surface objects provide a lower
boundary condition for the RT equation. Most objects have anisotropic re
ectances, which can be described
by the bidirectional re
ectance distribution function (BRDF). Generally, the RT equation is solved with a
nonuniform and non-Lambertian boundary surface. The research of Case et al. (1953) indicated that decou-
pling the atmospheric RT from the transfer within surface objects is rigorously possible without the loss of
accuracy, only if the boundary conditions for the atmospheric RT equation are appropriately speci�ed. But
the re
ectance properties of the boundary surface can only be retrieved from the remotely sensed data after
the removal of atmospheric e�ects. To resolve this interdependency between surface BRDF retrieval and
atmospheric correction, most atmospheric correction methods assume that the surface is Lambertian. The
atmospheric correction scheme of the MODIS (Moderate Resolution Imaging Spectroradiometer) couples
atmospheric correction and surface BRDF retrieval by performing an iteration loop. In this scheme, atmo-
spheric correction is �rst performed on MODIS observations under the assumption of an isotropic surface
BRDF; the re
ectances are then used to retrieve a new BRDF, and atmospheric correction is updated based
on the new BRDF (Vermote et al., 1995).

In theory, this problem of specifying the correct boundary conditions at the atmosphere-surface interface
is eliminated when a coupled system of atmosphere and the earth surface is considered for the RT analysis.
A single radiative transfer model that includes radiative transfer in the atmosphere as well as at the Earth's
surface is developed for a coupled system. But a coupled system is very complicated, and the discontinuity of
the interface between the atmosphere and surface objects is handled in present coupled atmosphere-surface
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RT equations as an area of multiple re
ections between the atmosphere and any surface object (Myneni, et
al., 1991; Liang et al., 1993). In addition, solving coupled RT equations requires many approximations and
a large number of calculations (Asrar, 1989).

In this paper, we focus on atmospheric correction methods which decouple the atmospheric RT from the
RT within surface objects. The important question for these atmospheric correction methods is whether it
is necessary to take surface anisotropic re
ectance properties into consideration in atmospheric correction,
and if so, how to do it.

The research of Lee and Kaufman (1986) indicates that even for a nonturbid atmosphere, the assump-
tion of a Lambertian surface leads to large errors in predicted upward radiance in the backscattering portion
of the hemisphere, especially for large solar zenith angles. Their research is based on a savanna data set
(Kriebel, 1977). Vermote et al. (1995) analyze the e�ect of surface anisotropic re
ectances on atmospheric
correction by using a Hapke model (Pinty et al, 1989). The model parameters are determined by �tting
a �eld-measured directional re
ectance data set of a plowed �eld (Kimes, 1985). Their results show that
an adequate surface BRDF for use in atmospheric correction can be retrieved from the results of the at-
mospheric correction assuming a Lambertian surface. This iteration ultimately causes much smaller errors
in the surface re
ectances than the use of an atmospheric correction with the assumption of a Lambertian
surface does. For example, the error is reduced from 10%�15% to 2%�3% , when the aerosol optical depth
is 0:23. We have conducted similar research using Ross-thick{Li-sparse model (Wanner et al., 1995) based
on three simulated land cover types (tree-dominated, crop-dominated, and tree and crop half-mixed, respec-
tively) and the angular sampling of MODIS/MISR over latitude 45o north during a 9-day period around
March 25 (Strahler et al., 1995). In our results, the assumption of an isotropic surface boundary in the
atmospheric correction calculation leads to an error of about 2%� 16% in the retrieved surface re
ectance
in the red band for an atmosphere with aerosol optical depths at 550nm of 0:15, 0:3 and 0:5. A single
iteration of a coupled surface BRDF retrieval and atmospheric correction iteration loop reduces the error to
a range from 0:4% to 6:2%. All of this research indicate the necessity of taking surface BRDF into account
in atmospheric correction. But this work is based on several speci�c cases with limited land cover types and
angular samplings.

In this study, we systematically analyze the relationship between the surface BRDF retrieval and atmo-
spheric correction by investigating the sensitivity of the retrieved surface re
ectance to the input surface
re
ectance properties based on the atmospheric correction scheme of MODIS.

2. Theoretical Basis and Simulation data

In the atmospheric correction algorithm of MODIS (Vermote et al., 1995), the re
ectance at the top of
the atmosphere for the visible and near-infrared bands are expressed as

�toa(�s; �v; �) = �
0
+ e

��=�ve
��=�s�s(�s; �v; �) + e

��=�vtd(�s)��+ e
��=�std(�v)��0

+td(�s)td(�v)���+
(e��=�s + td(�s))(e

��=�v + td(�v))S(���)
2

1� S���
(1)

where �toa is the re
ectance at the top of the atmosphere; �
0
is the intrinsic atmospheric re
ectance;

�s is the surface re
ectance; S is the re
ectance of the atmosphere for isotropic light entering the base
of the atmosphere; �s is the cosine of the solar zenith angle, and �v is the cosine of the view zenith
angle; � is the azimuthal di�erence between the sun and view zenith angle; e��=�s and td(�s) are the
downward direct and di�use transmittance of the atmosphere along the path of the incoming solar beam,
respectively; e��=�v and td(�v) are the upward direct and di�use transmittance of the atmosphere in the
viewing direction, respectively; � is the atmospheric optical depth; ��, ��0, and ��� are the surface hemispherical-
directional, directional-hemispherical, and hemispherical-hemispherical re
ectances, respectively, and couple
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the atmospheric optical parameters and the surface re
ectance properties. They are expressed in Equation
(2-4).
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where, L # (�s; �; �0) is the downwelling di�use irradiance with the sun at �s.
From these equations, we can note that, given atmospheric optical parameters and a series of surface

re
ectances estimated by other products or calculated by a BRDF model describing the bidirectional re-

ectances of the surface object, the coupled terms can be calculated and the atmospherically corrected
surface re
ectances can be obtained by solving Equation (1). Operationally, a BRDF model and the model
parameters are �rst determined by the prior knowledge of surface objects or a prior product, and then these
coupled terms are calculated. To give more weight to the actual observations than to the estimated surface
BRDF used in the calculation of these coupled terms, equation (1) can be modi�ed as follows:

�toa = �
0
+ e
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where, �sm is a predicted surface re
ectance, for example taken from a BRDF model. In this modi�ed
approach, only the shape of the surface BRDF in
uences the correction process and not the actual magnitude
of the estimated surface BRDF. �s can be obtained by solving equation (5).

When the surface is Lambertian, ��� = ���0 = ���� = 1 and ��� = �s. Thus, equation (5) can be simpli�ed as

�toa = �
0
+
(e��=�s + td(�s))(e

��=�v + td(�v))�s
1� S�s

(7)

So, under the assumption of a Lambertian surface, �s can easily be calculated using equation (7).
We accomplished this study using 6S (Vermote et al., 1994). In its forward mode, 6S can calculate

the re
ectance at the top of the atmosphere at a given viewing and illumination geometry according to
equation (1). 6S also performs atmospheric correction in its inverse mode. Here we use its atmospheric
correction based on the assumption of a Lambertian surface according to equation (7). This method is
called a Lambertian-based atmospheric correction. We have added an atmospheric correction method which
considers the surface BRDF based on equation (5) and uses a BRDF model, Ambrals (Algorithm for Modis
Bidirectional Re
ectance Anisotropics of the Land Surface) (Strahler et al., 1996). This method is called
BRDF-based atmospheric correction.

In this study, we use the forward mode of 6S to calculate simulated observation data (�toa) of MODIS
and MISR using equation (1). To make our simulation convincing, the following various conditions are used
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in this research.
1). Angular sampling. We use the angular samplings of MODIS and MISR for geographic locations from

latitude 60o south (-60o) to latitude 60o north (+60o) at intervals of 15o during a 16-day period around
March 12. These angular samplings provide a good coverage of the view angle hemisphere, and a range of
sun zenith angle from 20o to 60o.

2). Surface cover types. Four typical land cover types are analyzed here. They are a plowed �eld,
a hard wheat �eld with 11 percent of coverage, a grass lawn (vegetation coverage: 97%; LAI: 9.9) and a
hardwood forest (Kimes et al., 1983, 1985, and 1986). Bidirectional re
ectances at a given angular sampling
are calculated by �tting Ambrals to these �eld-measured data sets and determining the model parameters
for these land cover types in the red and near-infrared bands. The solid lines in Figure 1 and Figure 2 show
the BRDF plots in the principal plane in the red and near-infrared bands, respectively. As can be seen,
these BRDF shapes are typical of most land cover types. For example, in the red band, there is a strong
hotspot in the surface BRDF of bare soil and the �eld with a sparse vegetation coverage, and an evident
bowl shape and hotspot for the dense crop �eld, grass lawn, and forest.

3). Atmospheric conditions. The simulated atmospheric conditions are for a continental aerosol model
and the aerosol optical depths at 550nm of 0:1, 0:2 and 0:4. Based on some measurement data of aerosol
optical depths ( Kaufman et al., 1994), an optical depth of about 0:1 is typical for semidesert areas (without
dust outbreaks) and for land areas in high latitudes (> 30o), and optical depths of about 0:2�0:3 are typical
for tropic forest area during the dry season. Also research on maximum aerosol optical depths derived from
NOAA AVHRR global coverage data indicates that aerosol optical depths are often over 0.3, with the highest
value of about 2.0 occurring over south America and Africa (Vermote et al., 1996).

To clearly show the atmospheric e�ects, we calculate and display the root mean square error (rmse)
between the true surface re
ectances (�s) and those at the top of the atmosphere (�toa) at every given angular
sample in the top plots in Figure 3 and Figure 4. Figure 5 and Figure 6 show the plots of the re
ectances
in the principal plane in the red and near-infrared band, respectively, to display how atmospheric scattering
a�ects the shape of the surface BRDF. As anticipated, 1). the errors are larger in the red band than in the
near infrared band, because atmospheric scattering decreases as wavelength increases, and the e�ect of the
path radiance of the atmosphere is larger in relative to the smaller re
ectances of vegetated land covers in
the red band than to their larger re
ectances in the near infrared band; 2). the errors increase with the
increasing of the optical depth of aerosols (even for the atmosphere with the aerosol optical depth of 0:1,
the errors are still very large, ranging from 3:0% in the hard wheat �eld to 124% in the hardwood forest in
the red band), and the shape of the surface BRDF at the top of the atmosphere is far di�erent from that
of the true one, due to the e�ect of atmospheric scattering. These results show that atmospheric e�ects on
remotely sensed data should be removed in remote sensing applications where absolute surface re
ectances
are needed.

3. The sensitivity of the retrieved surface re
ectance to the input sur-

face re
ection properties

From equation (5), one can see that the surface BRDF in
uences the atmospheric correction through the
terms ���, ��0� and ����. To obtain the relationship between atmospheric correction and the surface BRDF
retrieval, we investigate the sensitivity of the retrieved surface re
ectance to these ratios. Assuming that an
error occurs separately and simultaneously in ���, ��0�, and ���� on the order of 1%, we can calculate the rmse
caused in the retrieved surface re
ectances for a given angular sampling. For di�erent angular sampling and
land cover types, the sensitivity of the retrieved surface re
ectance to these ratios is di�erent. The mean
values and ranges based on all the various cases studied are shown in Figure 7 and Figure 8 for the red and
near-infrared bands, respectively.
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In Figure 7 and Figure 8, the x-axis shows the relative errors(%) in input ���, ��0�, ���� and all them
combined; the y-axis shows the mean rmse (%) between the true surface re
ectances and the retrieved
values, caused by these errors. The error bars show the range of the rmse in various cases investigated
(di�erent land cover types and latitudes). From these plots, one can see that the sensitivity of the retrieved
surface re
ectance is nearly linear to any error occurring in ���, ��0� and ����. The approximate slope degree is
shown in Table 1 and Table 2 for the red and near-infrared bands, respectively. One can also see that the
retrieved surface re
ectance is more sensitive to ��� and ��0� than to ����. This is because the contributions
of the surface hemispherical-directional re
ectance (relating to ���) and directional-hemispherical re
ectance
(relating to ��0�) to the upward radiance are larger than that of the surface hemispherical-hemispherical
re
ectance (relating to ����). And the retrieved surface re
ectance is much more sensitive to all them combined
than to one of them. For example, for an aerosol optical depth of 0:2 in the red band, when a 8% error
occurs in ���, ��0�, and ����, the error caused in the retrieved surface re
ectance is 1:17%, 1:18%, and 0:44%,
respectively. But, when the error simultaneously occurs in them, the error caused in the retrieved surface
re
ectance is 2:71%. Finally, one can see that the sensitivity of the retrieved surface re
ectance to these
ratios is larger in the red band than in the near-infrared band and increases as the optical depth of aerosols
increases, and that the error bars indicate that the sensitivity of the retrieved surface re
ectance to these
ratios varies with the land cover types and angular samplings.

In the following, we will analyze the relationship between the surface BRDF retrieval and atmospheric
correction by considering these results and atmospheric correction methods.

3.1. Lambertian-based atmospheric correction

A Lambertian-based atmospheric correction assumes the surface is Lambertian, where ���, ��0� and ����

equal 1. We calculate the rmse in ���, ��0� and ���� caused by this assumption for a given angular sampling.
Column IV of Table 1 and Table II shows the mean rmses of all cases here (di�erent land cover types and
altitudes) for ���, ��0� and ���� and their ranges (in brackets). Referring to the degrees in slope, we can see that
the errors in ���, ��0� and ���� will lead to large errors in the retrieved surface re
ectance, such as from 1:8%
to 7:7% for the aerosol optical depth of 0:1 in the red band. These points can be demonstrated by carrying
out a Lambertian-based atmospheric correction.

We performed a Lambertian-based atmospheric correction for the �toa calculated above using the inverse
mode of 6S according to equation (7). Table 3 shows the mean and range values of the rmse(%) between the
true surface re
ectances and the retrieved values from this Lambertian-based atmospheric correction for a
given angular sampling, and for the various cases. As the table shows, even in a non-turbid atmosphere, the
error in the retrieved surface re
ectance is still very large. For example, when the aerosol optical depth is
0.1, the mean value of the error is 1:90% and its maximum is as high as 4:10% in the near-infrared band, and
the error increases to the mean value of 3:21% with the maximum of 7:66% in the red band. Furthermore,
as the aerosol optical depth increases from 0.1 to 0.4, the mean error increases from 3:21% to 7:46% in the
red band, and from 1:90% to 5:02% in the near-infrared band. Finally, the large error range indicates that
the error varies with land cover types and angular samplings (i.e. the BRDF shapes). This point can clearly
be seen from the middle plots in Figure 3 and Figure 4. For di�erent land cover types at di�erent angular
samplings, the BRDF shape is di�erent. Thus the error caused by the assumption of a Lambertian surface
is di�erent. The farther away from isotropy the surface BRDF shapes are, the larger the error is. Among
these land cover types, the plowed �eld has the strongest anisotropic re
ectance characteristics, thus the
error caused in the plowed �eld is largest. The di�erences in the error caused in the surface re
ectance in
di�erent cases become larger with the increasing of the optical depths of aerosols.

To see how the Lambertian-based atmospheric correction a�ects the BRDF shape, we show the BRDF
plots in the principal plane in Figure 1 and Figure 2, where those with the dotted lines are retrieved from
the Lambertian-based atmospheric correction. From these plots, we can note that the Lambertian-based
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atmospheric correction distorts the BRDF shapes and the largest errors occur at the hotspot and bowl edge
area. But the BRDF shapes retrieved from the Lambertian-based atmospheric correction are indeed nearer
to the true ones than an isotropic line.

Surface re
ectances retrieved from atmospheric correction are usually used to invert a BRDF model and
then retrieve some biophysical parameters of surface objects and calculate the surface albedo. So, we also
calculate the rmses between the true model parameters and their retrieved values, and between the true
surface albedo and its predicted value by the inverted BRDF model. The results are shown in Table 3.

From Table 3, we can see that the errors in the retrieved model parameters are very large, such as 13:58%
for the aerosol optical depth of 0:1 in the red band. The albedo predicted by the retrieved BRDF model
deviates from its true value by 0:03% to 4:88% in the red band for various cases (di�erent latitudes, land
cover types and aerosol optical depths), and by 0:21% to 4:61% in the near-infrared band.

From the above analysis of surface re
ectances at given angular samples, BRDF model parameters and
surface albedos, we can see that one should take the surface BRDF into account in atmospheric correction.

3.2. The coupled surface BRDF retrieval and atmospheric correction loop

The coupled surface BRDF retrieval and atmospheric correction iteration loop uses a surface BRDF in
atmospheric correction as a lower boundary condition in the atmospheric correction. As in all iteration
procedures, initial values of input surface re
ectance properties are �rst determined, and then the itera-
tion is performed and the estimated values are updated. The iteration is continually performed until a
desirable result is obtained. Here, the initial values of ���, ��0� and ���� are estimated from the results of a
Lambertian-based atmospheric correction. So, the �rst iteration of the loop consists of using Ambrals to �t
the re
ectances retrieved from the Lambertian-based atmospheric correction to obtain model parameters.
Based on these model parameters and the atmospheric optical parameters, the estimated ���, ��0� and ���� can
be calculated. Then BRDF-based atmospheric correction of �toa is performed. From the previous calcula-
tions, we know, this Lambertian-based atmospheric correction leads to large errors in the model parameters
(Table 3). However, the errors caused in ���, ��0� and ���� by using these model parameters is acceptable.

Column V of Table 1 and Table 2 show the errors between the true ���, ��0� and ���� and the estimated
values from a Lambertian-based atmospheric correction. Compared with Column IV (the errors in ���, ��0�

and ���� caused by the assumption of a Lambertian surface in the Lambertian based atmospheric correction),
the errors in Column V are smaller, thus causing smaller errors in the retrieved surface re
ectance (referring
to the slope degrees). But when the optical depth of aerosols is large, such as 0.4, the errors in the retrieved
surface re
ectance are still large, such as a mean value of about 2:50% in the red band (referring to the slope
degrees).

The errors caused in the retrieved surface re
ectances, BRDF model parameters and surface albedos after
performing the �rst iteration are shown in Table 4. Compared with the errors caused by the Lambertian-
based atmospheric correction in Table 3, the errors shown in Table 4 caused by the �rst iteration are much
smaller. For example, in the red band, the mean error in the retrieved surface re
ectance decreases from
3:21% � 7:46% to 0:49% � 2:64%. Also the ranges of these errors are smaller, which can be seen in the
bottom plots in Figure 3 and Figure 4. This is because the surface re
ectance properties used in the �rst
iteration are nearer to the true ones than those used in Lambertian-based atmospheric correction, thus the
di�erence in the extent to which the estimated BRDF shapes deviates from the the actual ones for di�erent
cases is decreased. After the �rst iteration, the surface BRDF shape in the principal plane is much nearer to
the true one than it is after a Lambertian-based atmospheric correction. This is demonstrated in Figure 1
and Figure 2, where the dashed lines are the results after the �rst iteration.

From Table 4, one can also note that the errors are still large in the retrieved surface re
ectances, such
as over 2:00% in the red band in some cases when the aerosol optical depth is larger than 0.2. Therefore,
we explored the e�ects of a second iteration in this procedure.
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In this step, the Ambrals BRDF models are �tted to the surface re
ectances retrieved from the �rst
iteration. Because the errors in the model parameters inverted from the �rst iteration are much smaller
than those from the Lambertian-based atmospheric correction, in this step the errors in ���, ��0� and ���� cal-
culated based on these model parameters should be smaller than those in the �rst iteration. Thus the errors
caused in the retrieved surface re
ectances are smaller than those occurring after the �rst iteration. This is
demonstrated by the values in column VI of Table 1 and Table 2 , and Table 5. The mean errors in ���, ��0�

and ���� decrease from 4:08%, 4:02% and 6:99% in the �rst iteration to 1:45%, 1:46% and 2:39% in the second
iteration, for an atmosphere with the aerosol optical depth of 0:4 in the red band. Correspondingly, the mean
errors in the retrieved surface re
ectances decrease from 2:64% to 0:90%. The errors caused in the model
parameters and surface albedos also decrease. However, the error ranges in the retrieved surface re
ectances
tell us that for certain extreme cases (such as MODIS/MISR looks over 60o north and south), the error of
the retrieved surface re
ectances of the plowed �eld is over 3:60% in the red band. Actually, depending on
speci�c land cover types and the angular sampling, the iteration loop may need to be performed more than
two times. Thus the convergency of the iteration loop should be considered.

Because of the complication of the algorithm, we can not obtain proofs mathematically. Thus, in this
study, we iteratively perform the iteration loop several times for an aerosol optical depth of 0.4. For every
step, we use Ambrals to �t the re
ectances retrieved from the last step and do a BRDF-based atmospheric
correction based on the inversion results. The rmse between the true surface re
ectances and the retrieved
values, and the relative change in the model parameters between the adjacent steps, decreases as more iter-
ations are performed. After 5 iterations, the relative change in the model parameters decreases to 0:5% and
the mean error in the retrieved surface re
ectances decrease to near-infrared band than in the red band.

In summary, surface BRDF retrieval and atmospheric correction can be coupled in a converging iteration
loop, which can improve the quality of atmospheric correction of re
ectances.

4. DISCUSSION

4.1. The e�ect of skylight on atmospheric correction

From equation (2), we know the calculation of �� requires knowledge of the downward radiation. Thus in
a BRDF-based atmospheric correction, the exact distribution of skylight need to be known. Here we will
investigate the assumption that the skylight is isotropic, so that we can save a large amount of calculation
time. We use the model parameters retrieved from Lambertian-based atmospheric correction and assume
the skylight is isotropic to calculate the estimated ���. Table 6 is the mean rmse and dynamic range between
the estimated ��� and the true values. Compared with column V in Table 1 and Table 2 where the skylight is
exactly calculated, the estimated error in ��� increases from 0:77%� 5:66% to 5:16%� 16:02% to the aerosol
optical depth of 0:1 in the red band. Thus the corresponding error caused in the surface re
ectances by the
error in ��� increases from 0:08% � 0:57% to 0:52%� 1:60%. Thus we should avoid the assumption of an
isotropic skylight in atmospheric correction.

4.2. Comparison between the BRDF-based atmospheric correction using absolute sur-

face BRDF and that using surface BRDF shape

Table 1 and Table 3 show the rmse between the true ratio of the surface albedo to its bidirectional
re
ectance, ����, and the estimated ratio from the results of the Lambertian-based atmospheric correction,
and that between the true surface albedo, ���, and its estimated values from the results of the Lambertian-
based atmospheric correction, respectively. From these results, we can note that the rmse in ��� is smaller
than that in ����. Similarly, we also calculate the estimated errors in �� and ��0 in the �rst iteration of the
loop. The results are shown in Table 7. Compared with column V of Table 1, the errors in �� and ��0 are
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smaller than those in ��� and ��0�. So a question remains, is the BRDF-based atmospheric correction based
on Equation (7) better than that based on Equation (1)? To answer this question, we analyze the sensitivity
of the retrieved surface re
ectance to ��, ��0 and ��� according to Equation (1) under the same simulation
conditions as those in the above sensitivity analysis. Figure 7 shows the results in the red band. Comparing
Figure 7 and Figure 5, one can see that the surface re
ectance is more sensitive to ��, ��0 and ��� than to ���,
��0� and ����. Thus even though the estimated errors in ��, ��0 and ��� are smaller than those in ���, ��0� and ����,
the error caused in the surface re
ectances is larger by the errors in ��, ��0 and ��� than by the errors in ���, ��0�

and ����. The BRDF-based atmospheric correction using the estimated surface BRDF shapes is better than
that using absolute surface BRDF.

5. Conclusions

In this study, we analyze the sensitivity of atmospherically corrected re
ectances to surface BRDF. Decou-
pling atmospheric correction and the surface anisotropic BRDF leads to large errors in the retrieved surface
re
ectances. In addition to atmospheric optical parameters, surface BRDF shape determines the size of the
error, varying from 2:41% to 11:64% in the red band for the atmosphere with the aerosol optical depth of
0:2. The farther away from isotropy the BRDF shape is, the larger the error becomes. The surface BRDF
retrieval and atmospheric correction can be coupled in a converging iteration loop. The initial values of
surface re
ectance properties are derived from the atmospheric correction with the assumption of a Lamber-
tian surface. The accuracy of the estimated surface re
ectance properties increases as more iterations are
performed, thus the error in the retrieved surface re
ectance decreases. However, one or two iterations are
already su�cient to obtain a mean error of only 0.89% in the red band even with an atmospheric optical
depth of 0:4.

As one notes, all the error values in this study are based on the assumption that the exact atmospheric
optical parameters are known. This does not hold in actual applications. In the future, we will further
analyze the e�ect of the uncertainty of atmospheric optical parameters on the sensitivity of atmospheric
correction of re
ectances to the surface BRDF.
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Table 1 The rmse( %) in ���, ��0� and ���� in the red band

slope degree Lambertian assumption BRDF(I) BRDF (II)

� = 0:1 0:10 13:42(7:06� 27:68) 2:09(0:77� 5:66) 0:28(0:09� 0:94)
��� � = 0:2 0:15 12:35(6:31� 26:86) 2:78(1:00� 7:84) 0:62(0:17� 1:95)

� = 0:4 0:20 11:99(6:19� 27:92) 4:08(1:51� 11:82) 1:45(0:43� 4:75)

� = 0:1 0:10 13:35(6:99� 28:50) 1:85(0:62� 5:97) 0:29(0:09� 1:07)
��0� � = 0:2 0:15 12:10(6:00� 26:83) 2:56(0:89� 8:32) 0:60(0:18� 2:28)

� = 0:4 0:20 11:58(5:59� 26:88) 4:02(1:51� 12:13) 1:46(0:45� 5:33)

� = 0:1 0:03 23:91(14:34� 56:53) 2:95(1:11� 8:24) 0:43(0:16� 1:36)
���� � = 0:2 0:05 23:91(14:34� 56:53) 4:15(1:65� 12:17) 0:92(0:35� 3:03)

� = 0:4 0:12 23:91(14:34� 56:53) 6:99(2:84� 19:02) 2:39(0:88� 7:47)

BRDF (I) and BRDF (II) represent the �rst and second iteration of the surface BRDF retrieval and atmo-
spheric correction loop, respectively.

Table 2 The rmse( %) in ���, ��0� and ���� in the near-infrared band

slope degree Lambertian assumption BRDF(I) BRDF (II)

� = 0:1 0:06 12:56(6:99� 23:79) 1:11(0:51� 2:92) 0:12(0:04� 0:47)
��� � = 0:2 0:10 11:92(6:57� 23:71) 1:74(0:82� 4:62) 0:28(0:11� 1:32)

� = 0:4 0:16 11:64(5:85� 24:98) 2:69(1:24� 7:72) 0:67(0:32� 2:04)

� = 0:1 0:06 11:19(4:40� 25:06) 0:91(0:32� 3:31) 0:10(0:04� 0:34)
��0� � = 0:2 0:10 10:34(4:25� 24:23) 1:45(0:39� 5:24) 0:25(0:09� 0:90)

� = 0:4 0:16 9:89(4:33� 24:54) 2:56(0:85� 8:42) 0:67(0:29� 2:53)

� = 0:1 0:03 20:49(11:24� 55:51) 1:64(0:64� 4:63) 0:17(0:07� 0:58)
���� � = 0:2 0:05 20:49(11:24� 55:51) 2:70(1:05� 7:62) 0:45(0:19� 1:70)

� = 0:4 0:10 20:49(11:24� 55:51) 4:45(1:26� 12:90) 1:14(0:53� 3:45)

BRDF (I) and BRDF (II) represent the �rst and second iteration of the surface BRDF retrieval and atmo-
spheric correction loop, respectively.

Table 3 The rmse( %) between the true BRDF, BRDF model parameters and surface albedo and their
retrieved values from the Lambertian-based atmospheric correction

item wavelength � = 0:1 � = 0:2 � = 0:4

red 3.21 (1.71-7.66) 4.73 (2.41-11.64) 7.46 (3.78-18.25)
BRDF

nir 1.90 (0.93-4.10) 3.05 (1.51-6.96) 5.02 (2.55-12.32)

model red 13.58 (10.40-22.48) 17.83 (10.87-30.01) 30.17 (24.85-41.67)
parameters nir 8.65 (5.82-10.83) 13.28 (9.51-19.96) 22.85 (16.74-31.44)

red 1.12 (0.03-2.95) 1.49 (0.10-3.43) 1.75 (0.20-4.88)
albedo

nir 1.45 (0.21-2.55) 1.88 (0.41-3.01) 2.33 (0.10-4.62)
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Table 4 The rmse( %) between the true BRDF, BRDF model parameters and surface albedo and their
retrieved values from the �rst iteration of the coupled surface BRDF retrieval and atmospheric correction
loop

item wavelength � = 0:1 � = 0:2 � = 0:4

red 0.49 (0.16-1.85) 1.05 (0.32-3.92) 2.64 (0.84-9.08)
BRDF

nir 0.17 (0.09-0.60) 0.45 (0.26-1.34) 1.25 (0.56-1.64)

model red 1.66 (1.12-2.65) 3.69 (2.56-5.69) 9.72 (6.99-14.49)
parameters nir 0.74 (0.34-1.16) 1.87 (0.94-2.78) 5.17 (3.00-7.99)

red 0.36 (0.01-0.86) 0.68 (0.01-1.66) 1.33 (0.10-3.21)
albedo

nir 0.15 (0.00-0.33) 0.32 (0.02-0.70) 0.70 (0.02-1.74)

Table 5 The rmse( %) between the true BRDF, BRDF model parameters and surface albedo and their re-
trieved values from the second iterations of the coupled surface BRDF retrieval and atmospheric correction
loop

item wavelength � = 0:1 � = 0:2 � = 0:4

red 0.07 (0.02-0.31) 0.23 (0.07-0.99) 0.90 (0.25-3.63)
BRDF

nir 0.02 (0.01-0.06) 0.07 (0.02-0.25) 0.34 (0.13-1.19)

model red 0.21 (0.11-0.46) 0.77 (0.43-1.14) 3.30 (1.96-8.11)
parameters nir 0.06 (0.02-0.14) 0.26 (0.10-0.40) 1.25 (0.56-2.22)

red 0.06 (0.01-0.15) 0.15 (0.01-0.43) 0.48 (0.01-1.35)
albedo

nir 0.02 (0.00-0.03) 0.05 (0.00-0.11) 0.23 (0.01-0.88)

Table 6 The rmse( %) in ��� in the �rst iteration under the assumption of an isotropic skylight

wavelength � = 0:1 � = 0:2 � = 0:4
red 9.22 (5.16-16.02) 8.54 (4.29-15.76) 7.20 (3.48-12.33)

nir 10.03 (3.49-17.60) 9.33 (2.61-16.28) 8.22 (2.03-5.64)

Table 7 The rmse( %) in �� and ��0 in the red band in the �rst iteration of the coupled surface BRDF retrieval
and atmospheric correction loop

� = 0:1 � = 0:2 � = 0:4
�� 1.78 (0.80-4.56) 2.63 (1.28-5.17) 3.87 (2.15-8.10)
��0 1.71 (0.81-4.36) 2.47 (1.34-5.00) 3.77 (2.21-7.94)
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Fig. 1 The BRDF in the Principal Plane for selected Kimes data in the red band, where the sun zenith
angle is 30o and aerosol optical depth is 0:2. solid line: true value; dotted line: the retrieved values through
Lambertian-based atmospheric correction; dashed: the retrieved values through the first step of the surface
BRDF retrieval and atmospheric correction loop
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Fig. 2 The BRDF in the Principal Plane for selected Kimes data in the near-infrared band, where the sun
zenith angle is 30o and aerosol optical depth is 0:2. solid line: true value; dotted line: the retrieved values
through Lambertian-based atmospheric correction; dashed: the retrieved values through the first step of the
surface BRDF retrieval and atmospheric correction loop
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Fig. 3 The rmse between the retrieved surface reflectances and their true values in the red band.
solid line: plowed field; dotted line: hard wheat; dashed line: grass lawn; dash-dotted line: hardwood.
I, II and III denote the rmse between the true surface reflectances and the reflectances at the top of the
atmosphere, the retrieved reflectances from Lambertian-based atmospheric correction, and the retrieved
reflectances from the first step of the surface BRDF retrieval and atmospheric correction iteration loop,
respectively.
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Fig. 4 The rmse between the retrieved surface reflectances and their true values in the near-infrared band.
solid line: plowed field; dotted line: hard wheat; dashed line: grass lawn; dash-dotted line: hardwood.
I, II and III denote the rmse between the true surface reflectances and the reflectances at the top of the
atmosphere, the retrieved reflectances from Lambertian-based atmospheric correction, and the first step of
the the surface BRDF retrieval and atmospheric correction iteration loop, respectively.
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Fig. 5 The BRDF in the Principal Plane for selected Kimes data in the red band, where the sun zenith
angle is 30o and aerosol optical depth is 0:2. solid line: true value; dotted line: the value at the top of
atmosphere.
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Fig. 6 The BRDF in the Principal Plane for selected Kimes data in the near-infrared band, where the sun
zenith angle is 30o and aerosol optical depth is 0:2. solid line: true value; dotted line: the value at the top
of atmosphere.
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Fig. 7 The sensitivity of the retrieved surface reflectances to �̄�(I), �̄0�(II), ¯̄�� (III) and all of them togather
(IV) in the red band
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Fig. 8 The sensitivity of the retrieved surface reflectances to �̄�(I), �̄0�(II), ¯̄�� (III), and all of them togather
(IV) in the near infrared band
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Fig. 9 The comparison between the sensitivity of the retrieved surface reflectances to �̄(I), �̄0(II), ¯̄� (III)
(dashed lines) and the sensitivity of the retrieved surface reflectances to �̄�(I), �̄0�(II), ¯̄�� (III) (solid lines) in
the red band.
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Abstract

This paper describes the theory and the algorithm to be used in producing a global bidirectional re
ectance distribution

function (BRDF) and albedo product from data to be acquired by the moderate resolution imaging spectroradiometer

(MODIS) and the multiangle imaging spectroradiometer (MISR), both to be launched in 1998 on the AM-1 satellite

platform as part of NASA's Earth Observing System (EOS). The product will be derived using the kernel-driven

semiempirical Ambrals BRDF model, utilizing �ve variants of kernel functions characterizing isotropic, volume and

surface scattering. The BRDF and the albedo of each pixel of the land surface will be modeled at a spatial resolution

of one kilometer and once every 16 days in seven spectral bands spanning the visible and the near-infrared. The BRDF

parameters retrieved and recorded in the MODIS BRDF/albedo product will be intrinsic surface properties decoupled

from the prevailing atmospheric state and hence suited for a wide range of applications requiring characterization of

the directional anisotropy of earth surface re
ectance. A set of quality control 
ags accompanies the product. An

initial validation of the Ambrals model is demonstrated using a variety of �eld-measured data sets for several di�erent

land cover types.

1. Introduction

This paper reports on the status of the science and al-
gorithms to be employed in the routine production of a
global 1-km land surface bidirectional re
ectance distri-
bution function (BRDF) and albedo data product to be
generated beginning in mid-1998. This product will be
derived from the combined data of the moderate reso-
lution imaging spectroradiometer (MODIS) [Running et
al., 1994] and the multiangle imaging spectroradiometer
(MISR) [Diner et al., 1991], two key sensors of NASA's
Earth Observing System (EOS) on the AM-1 platform.

Produced through the MODIS project, it will be available
for use in atmospheric correction problems, earth radia-
tion budget studies, and climate and climate change in-
vestigations. It will also allow some inference of land sur-
face properties for use in global land cover classi�cation
and biophysical databases for vegetation modeling. Fur-
thermore, it will be employed in the angular correction of
MODIS and similar imagery.

Section 2 of this paper gives an overview of BRDF
applications, with an emphasis on the coupling between
the atmosphere and surface re
ectance. In section 3, the
MODIS BRDF/albedo product will be discussed with re-
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spect to sensor characteristics and the Ambrals BRDF
models to be used. Section 4 introduces the algorithm
that was developed for the processing, explains the pro-
cessing philosophy, and describes the product produced.
Section 5 o�ers an outline of current model and planned
product validation, and discusses the possible relationship
of the BRDF model kernels used to land cover type. The
paper closes with conclusions.

2. Multiangle E�ects in Remote

Sensing

2.1. Bidirectional Re
ectance

The observation that the re
ectance of most natural sur-
faces is anisotropic in nature is relevant to remote sensing
because under such circumstances the re
ectance of a sur-
face depends both on the viewing and on the illumination
angle. With natural scenes, this directional anisotropy is
caused by the way in which shadows cast by an ensemble of
objects such as plants, buildings or topographic slopes are
hidden or emerge as a function of the observation angle,
and by the intrinsic directionality of material in the scene,
for example the leaves of the plants. Mathematically, it is
described by the BRDF [Nicodemus et al., 1977].

Variations of view angle across images and between
images occur naturally due to a wide swath width (as for
the advanced very high resolution radiometer (AVHRR)
or MODIS) or to along-track o�-nadir viewing capabili-
ties (as for the along-track scanning radiometer, ATSR-2,
or MISR). Variations in the solar angle are caused by vari-
ations in the time of day, season and latitude of observa-
tions, and are also determined by orbital characteristics of
the satellite. Unless corrections for the BRDF are made,
comparisons of surface re
ectance observations across im-
ages from such instruments or between them are di�cult
or impossible. A simple example is given by the problem
of mosaicking together AVHRR data from di�erent orbits
to obtain a composite image, where the orbital border will
be visible due to the di�erence in the sun-view geometry
in the two or several parts (see Li et al. [1996] for an
illustration).

The need to take BRDF e�ects into account when con-
ducting land surface studies, for example land cover clas-
si�cation, has increasingly been recognized [e.g., Wu et
al., 1994; Cihlar et al., 1995; Gutman, 1994; Moody and
Strahler, 1994]. It is known that current vegetation in-
dices retain some angular e�ects due to the di�erences in
the BRDF of di�erent wavebands [e.g., Wu et al., 1994].
It may even be desirable to standardize observations to
angles where no observations were acquired, for example
to nadir view and/or sun angle [Leroy and Roujean, 1994].

The BRDF may also be used to derive albedos, which

are mathematically de�ned as weighted integrals (aver-
ages) of the BRDF. Surface albedos play an important role
in global and regional climate since they determine the sur-
face energy balance, for example the heat 
uxes linked to
evapotranspiration [Kustas et al., 1989]. The BRDF and
its integrals are also important for atmospheric correction
in remote sensing [Kaufman, 1989], where errors of up to
10 percent or more may be made when BRDF e�ects are
disregarded. We will discuss albedos and atmospheric cor-
rection in more detail further on. Recently there have also
been indications that knowledge of the BRDF function can
be valuable in cloud detection [d'Entremont et al., 1995,
1996; see also DiGirolamo and Davies, 1994], opening up
the possibility of improved cloud detection in the absence
of thermal data.

Finally, the BRDF can be interpreted to infer land
surface properties. Since the angular dependence of the
re
ectance is driven by the optical properties of the scat-
tering medium and by its three-dimensional structure, one
may attempt to retrieve the dominant parameters describ-
ing these properties from the observed BRDF functions.

Initially, such retrievals will be experimental, and the
main focus of BRDF/albedo work will be on semiempirical
descriptors of the BRDF that can be used for angle cor-
rections and albedo calculations without requiring detailed
physical modeling of the scene viewed. This is the path
taken by the MODIS BRDF/albedo product. As more
experience is accumulated, however, and as more com-
puter power becomes available, more elaborate retrievals
of physical parameters may be attempted [Goel, 1989;
Pinty and Verstraete, 1991]. The MODIS land cover prod-
uct [Strahler et al., 1995b] will make use of re
ectances
corrected for angular e�ects but will also take into consid-
eration the observed BRDF shape itself.

2.2. Surface BRDF-Atmosphere Coupling

Atmospheric correction algorithms for operational process-
ing are commonly based on expressing the total transmit-
tance of radiation from the top of the atmosphere to the
ground as the sum of a direct and a di�use component (see
Kaufman [1989] for a general treatment of atmospheric
correction in remote sensing). One then arrives at expres-
sions such as the one suggested by Li [cf. Strahler et al.,
1995a], which is similar to the formulation to be used for
MODIS atmospheric correction in the visible and near-
infrared [see Vermote et al., 1995, 1996]. We have:

�toa = �path +
t(�s)Rt(�v) � e��=�s jRje��=�v

1� �s�a
; (1)

where �s is the cosine of the solar zenith angle, �v that of
the view zenith angle, �toa the re
ectance at the top of the
atmosphere, �path the re
ectance due to path radiance, �a
the downward hemispherical re
ectance of the atmosphere
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for isotropic light entering at its base, �s(�s; �v; �) the
directional surface re
ectance (surface BRDF), with � the
relative azimuth between sun and view zenith (�s and �v),
and � the optical thickness; the vector t and matrixR are
given by

t(�) =
h
e��=�; td(�)

i
; (2)

and

R =

"
�s �b(�s)

�s(�s;�v; �) �s

#
: (3)

In these expressions, td is the di�use transmittance of the
atmosphere, �b is the directional-hemispherical integral
(\black-sky albedo") of the BRDF,

�b(�s) =
1

�

Z
2�

0

Z �=2

0

�s cos(�v) sin(�v)d�vd�; (4)

�s(�s;�v; �) is the di�use irradiance that is directly scat-
tered into the viewing direction (�v; �) under illumination
from �s,

�s(�s;�v; �) =R
2�

0
L#(�s;�; �

0)�s(�; �v; �
0 � �) cos(�)d�d�0R

2�

0
L#(�s;�; �0) cos(�)d�d�0

; (5)

with L#(�s;�; �0) the downwelling di�use irradiance dis-
tribution with the sun at �s, and �s is the di�use-to-di�use
re
ectance under illumination from �s,

�s =
1

�

Z �=2

0

�s(�s;�; �) cos(�) sin(�)d�d�: (6)

Note that t(�s) and t(�v) contain only atmospheric
properties, namely the direct and di�use parts of the trans-
mittance, whileR contains only surface re
ectance proper-
ties, although partly under the prevailing conditions of dif-
fuse illumination, which depend on the atmospheric condi-
tion. The determinant, jRj, has the physical meaning of a
correction term for using �s in multiple bouncing between
surface and atmosphere.

These equations clearly demonstrate the coupling be-
tween surface re
ectance properties and atmospheric ra-
diative transport. Given the atmospheric parameters, the
BRDF �s can be retrieved only if the integral re
ectance
expressions occurring are known, which in turn depend on
the BRDF and the atmospheric state.

Approximations that can be made are to simplify the
treatment of multiple scattering to be mainly based on
the terms involving td(�s)td(�v), or to approximate �s by
�b. However, the error made can be signi�cant under tur-
bid conditions [Lewis and Barnsley, 1994]. Approximat-
ing �s by the bihemispherical integral of the BRDF (the
\white-sky albedo" �w, which is the normalized integral
of �b(�s) cos(�s) over the sun zenith) is less problematic,

since the multi-bounce radiation between surface and at-
mosphere will tend to an isotropic distribution.

If a simultaneous, iterative retrieval of surface re
ectance
and the coupling integrals is not possible, approximate
values will have to be used for the BRDF integrals. In
practice, these may be taken from previous retrievals or
estimated from the surface re
ectance and ancillary data.
In the past, the most commonly used assumption has been
that the surface is Lambertian, which breaks the coupling
but introduces a potentially important error, as is demon-
strated in the next section.

2.3. Magnitude of BRDF E�ects in Atmo-

spheric Correction

Work by Lee and Kaufman [1986] showed that even in non-
turbid conditions the assumption of a Lambertian surface
leads to large errors in predicted upward radiance in the
backscattering portion of the hemisphere (the situation is
much more favorable in the forescattering direction), espe-
cially for large solar zenith angles (e.g., 60�). This study
was conducted for a savanna data set [Kriebel, 1978]. In a
more recent study, Vermote et al. [1995, 1996] performed
atmospheric corrections of re
ectance data that were ob-
tained from a Hapke model [Pinty et al., 1989] �tted to
directional re
ectances of a plowed �eld with the sun at
30� zenith angle [Kimes, 1985]. Corrections were carried
out �rst using the assumption of a Lambertian surface,
then repeated using the BRDF reconstructed from that
\Lambertian" retrieval. In this manner a one-step itera-
tion was carried out. The respective solutions were com-
pared for three di�erent optical depths. For a nonturbid
atmosphere, � = 0:01, the Lambertian assumption does
not lead to serious errors. For � = 0:23 the relative error is
already about 10{15 percent at view zenith angles of �60�,
and less at smaller angles. The error of the solution after
one iteration is reduced to about 3{4 percent. In a turbid
situation, � = 0:5, the error made with the Lambertian
assumption is large, about 30 percent at +60� (forescat-
tering), and 12 percent at �60�, with smaller errors at
smaller view zenith angles. After the �rst iteration, this
error is reduced to 20 percent and 5 percent, respectively.
A second iteration, based on the BRDF from the �rst it-
eration, reduces the error to 14 percent and 1 percent,
respectively.

We have conducted a similar study using a Ross-thick+Li-
sparse kernel-driven BRDF model [Wanner et al., 1995a].
Three di�erent types of BRDF were investigated: strong
volume scattering (a croplike canopy), strong geometric-
optical scattering (a sparse woodland canopy), and an
intermediate case. The atmospheric model used was a
US standard atmosphere and continental aerosol, and the
6S atmospheric correction code was used [Vermote et al.,
1996]. Table 1 shows the ranges of RMS error, in per-
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cent, that were observed for these cases for di�erent optical
depths, and when using a Lambertian assumption for at-
mospheric correction and when not, performing a one-step
iteration. Results are given for the red and near-infrared
wavebands, and for the surface BRDF and the bihemi-
spherical integral of the BRDF (the white-sky albedo). In
both cases, the errors which arise clearly increase with op-
tical depth, but are noticeably smaller in the non-Lambertian
case when compared to that using the Lambertian as-
sumption. Employing an isotropic surface re
ectance in
atmospheric correction, errors in the surface re
ectance
between about 2 percent and 16 percent are made. A one-
loop correction, however, reduces the errors to a range
from 1 to 3 percent in all but the most turbid case, where
the errors are also reduced considerably. The situation
is similar with the bihemispherical re
ectance. The er-
ror made is reduced by a signi�cant factor if a one-step
iteration loop is performed.

These results show clearly that errors of up to 10
percent, and at some angles and under turbid conditions
more, occur if BRDF e�ects are not taken into account in
atmospheric correction. The di�erence between the �rst
and second iteration in the turbid case of the study of
Vermote at al. [1995] illustrates that even using a BRDF
that is only approximately correct can be improved upon
noticeably by using a BRDF that is closer to the real
anisotropy. The conclusion from all the studies is that
it is worthwhile, even necessary, to use BRDF corrections
in atmospheric correction, unless the conditions are not
very turbid. It also is clear that the size of the error
that remains depends on the accuracy of the BRDF used.
However, an iteration in one or two steps leads to suf-
�ciently accurate results, and should thus always to be
carried out in operational atmospheric correction where
BRDF information is available. Given the central im-
portance of surface re
ectance to most of the goals to be
achieved in optical remote sensing, this implies that deriv-
ing a BRDF/albedo product is key to obtaining accurate
results from remotely sensed optical data.

This brief review has focused on the speci�c case of
the atmospheric correction problem. But by implication,
similar e�ects are to be expected in principle for radiation
budget studies and the radiation treatment in climate and
weather models. Clearly, the anisotropic nature of the
re
ectance of the earth's surface plays a role in shaping
the energy 
ux in the atmosphere close to the surface,
and needs to be taken into consideration in any surface
data retrieval or radiative tranfer modeling.

2.4. Albedo

Integrals of the BRDF play a role beyond that of atmo-
spheric correction. Good accuracy of global albedo val-
ues is required for global and regional climate and climate

change studies. Zhang et al. [1995] point out that over
land the average shortwave re
ectivity of clouds is only
1.5 times higher than that of the surface, making surface
albedo an important in
uence. These authors go on to
state that current uncertainty in land surface albedo is
more important than current uncertainty in cloud albedo
with respect to determining net surface shortwave 
uxes.
With respect to climate models, Henderson-Sellers and
Wilson [1983] state that an absolute accuracy of 5 percent
is required for a global albedo data set. The albedo val-
ues used by di�erent climate models for identical regions
still di�er by several percent (see Li and Garand [1994] for
an overview). Gutman [1994] addresses the problem that
albedo over dark targets, like rainforests, is more prob-
lematic than over land covers with higher re
ectivity, and
that errors here can easily be 20 percent. Sellers [1993]
cites a need for a 2 perdent absolute accuracy for global
albedo in climate models. Thus, there is a longstanding
need for highly accurate albedo data. To meet this need
is a prime objective for remote sensing, one that has not
been fully met up to date.

In attempts to bridge this gap, global albedo has been
derived using a number of techniques utilizing radiation

ux and budget assessments, but hitherto not from bidi-
rectional re
ectance distribution functions. Zhang et al.
[1995] assume Lambertian re
ectance in their study of sur-
face and top-of-atmosphere radiative 
uxes. The albedos
used are based on a few land cover classes and wind speeds
over oceans, and are given as a function of solar zenith an-
gle and season. Dropping the Lambertian assumption will
be the obvious next step in the development. A method
also discussed by Zhang et al. [1995] is to use albedos de-
rived from the earth radiation budget experiment (ERBE)
to �t measurements at hand, depending on land cover
type. Li and Garand [1994] investigate deriving surface
albedo from top-of-atmosphere albedos in a clear sky sit-
uation, and �nd an accuracy of a few percent. They point
out that bidirectional e�ects have not been given proper
attention even though they are among the decisive factors
in determining surface albedo from satellite measurements.
These authors also use a Lambertian albedo for the land
surface. The albedos of the International Satellite Land
Surface Climatology Project (ISLSCP) data sets [Sellers
et al., 1994] are derived using a two-stream approxima-
tion. Problems with directional e�ects in AVHRR data
in general and their in
uence on surface albedo estimates
are discussed by Gutman [1994] and Cihlar, Manak and
Voisin [1994].

As a consequence, current coarse land cover-based and
radiation 
ux-derived albedo estimates will in future be
replaced by albedo products derived from directional re-

ectance measurements utilizing BRDFmodels of the land
surface, such as the MODIS BRDF/albedo product. These
new products will also have the advantage of having much
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�ner spatial resolution than that of current data (2.5� �
2.5� for ERBE; 1� � 1� for the ISLSCP data base). This
will allow not only a closer correlation of albedos with land
cover classes, which is needed for parameterizations in the
land surface schemes of climate models, but also quan-
ti�cations of subgrid variability and derivation of better
coarse-scale averages.

3. The MODIS BRDF/Albedo Prod-

uct

3.1. Product Outline

The MODIS BRDF/albedo product will provide the full
surface BRDF as well as black-sky (directional) and white-
sky (di�use) albedos, these albedos being intrinsic surface
albedos. It will be produced from combining MODIS and
MISR data, at a spatial resolution of 1 km, and over land
only, globally. BDRF and albedos will be provided in 7
spectral bands ranging from 0.47 to 2.13�m (see Running
et al. [1994]) and in three broadbands ranging from 0.3
to 0.7�m, from 0.7 to 3.0�m, and from 0.3 to 3.0�m. The
product will be produced once every 16 days (the EOS-
AM-1 platform and MISR 2-look repeat rate) and will be
based on the semiempirical Ambrals BRDF model [Wan-
ner et al., 1995a; Strahler et al., 1995a; Lewis, 1995].
Results from inverting the empirical modi�ed Walthall
BRDF model [Walthall et al., 1985; Nilson and Kuusk,
1989] will also be recorded. A separate quarter-degree res-
olution product will be provided for global modeling pur-
poses. This product will also carry information on sub-
scale variability. Principal Investigators on the MODIS
BRDF/albedo product are A. H. Strahler of Boston Uni-
versity and J.-P. Muller of University College London.

3.2. Angular Sampling from MODIS and

MISR

Two key issues for a BRDF/albedo product are the angu-
lar sampling coverage available and the expected rate of
loss of angular data due to cloud cover. Angular sampling
is given by instrumental and orbital characteristics [Barns-
ley et al., 1994]. The EOS-AM-1 platform carrying both
MODIS and MISR will have a polar orbit with a 10:30
morning equatorial crossing time. The PM-1 platform, to
be launched in the year 2000 with a second MODIS sen-
sor, will have a 13:30 early afternoon crossing time. Data
from this second MODIS will be included in the MODIS
BRDF/albedo processing chain once it is available.

The MODIS sensor will image the earth's surface across-
track with a swath width of 2330 km [Running et al., 1994].
The viewing zenith angle will vary between �55�, or about
�61� at the surface. The repeat cycle is two days at most,

and less than one day at latitudes greater than about 30�.
Orbital overlap thus makes it well suited for accumulating
multiangle re
ectance data over a period of time. Spa-
tial resolution at nadir is 250 meters for the red and near
infrared bands and 500 meters for the other land bands.

MISR will image along-track using nine separate push-
broom cameras [Diner et al., 1991]. Four of these are
aft-looking, four fore-pointing, and one is nadir-viewing.
Observations will be made in four spectral bands at visi-
ble and near infrared wavelengths that are similar to those
of MODIS. The potential spatial resolution of MISR ob-
servations is 275 m, but data will be made available at a
standard spatial resolution of 1.1 km. MISR's swath width
is 364 km, allowing for a 9-day global repeat cycle, with
the 2-repeat cycle being 16 (not 18) days at the equator.

Angular sampling su�cient for BRDF model inver-
sions will be achieved by combining data from MODIS
and MISR in the four corresponding spectral bands, and
by accumulating data over a period of 16 days. In the
absence of clouds, this leads to between 30 multiangular
observations available at the equator, and about 55 ob-
servations at 60 degrees latitude, subject to variation with
season. Using a coarse statistic of mean global cloud cover
probability [Wylie and Menzel, 1989; Wylie et al., 1994]
as a function of latitude, one may predict that generally
about 15 to 20 multiangular observations will be available
at all latitudes except at the equator, where abundance of
cloudy conditions is likely to create problems.

With this number of observations available on average,
su�cient angular coverage for a BRDF model inversion is
to be expected in most cases. Since MODIS scans across-
track and MISR along-track, the respective views will gen-
erally represent di�erent parts of the BRDF [Barnsley et
al, 1994]. When one sensor views the cross-principal plane
of the BRDF, the other views the principal plane, and vice
versa. Figure 1 illustrates this, showing two typical cases
for a particular latitude and time of year. With two sweeps
across it, sampling of the viewing hemisphere is good in
all cases. Sampling of the illumination hemisphere, how-
ever, is limited. Any one string of MISR data is acquired
for only one solar zenith angle, while the MODIS observa-
tions display a small but valuable variation in that angle
during the sampling period.

3.3. Kernel-Based SemiempiricalBRDFMod-

els

The MODIS BRDF/albedo product will be based on a
semiempirical, kernel-based modeling approach introduced
by Roujean et al. [1992] for top-down BRDF modeling.
Mathematically, this type of model has the following form
(here using two kernels and a constant):

R(�i; �v; �) = fi + fvkv(�i; �v; �) + fsks(�i; �v; �); (7)
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where R is the re
ectance, kv and ks are kernel functions,
and f are the weights of these functions (the model pa-
rameters). The kernels depend only on the viewing and
illumination geometry. They describe basic BRDF shapes
into which the full BRDF may be decomposed.

In this kernel-based BRDF model, the BRDF is given
as a linear superposition of kernel shapes, which are chosen
to represent di�erent types of scattering with typical in
u-
ences on the BRDF. In the above formulation, for example,
kv stands for volume scattering as described by radiative
transfer theories, and ks for surface scattering as derived
from geometric-optical theories. The kernel that goes with
the constant fi is the isotropic Lambertian kernel, unity.
Although the kernel functions used can be empirical (as in
the Walthall model [Walthall et al., 1985]), they are best
derived from a physical theory through approximation,
making the resulting model semiempirical. Mathemati-
cally, the weights f may be expressed in terms of physical
properties of a scene, such as leaf area index, shape and
height of trees, surface re
ectance, etc. Through inver-
sion, however, only the three quantities f are retrieved,
providing the relative in
uence of the respective type of
scattering on the directional signal observed, and allowing
a rough characterization of the structural characteristics
of the surface observed.

The kernel-based approach to BRDF modeling has
been discussed and justi�ed by Roujean et al. [1992] and
Wanner et al. [1995a]. Depending on the scene, it may
be understood in di�erent ways. In a mixed scene com-
posed of two areas with di�erent BRDFs, for example a
grassland-forest mixed pixel, the superposition represents
the respective areal contributions of the mainly shadow-
driven (geometric-optical) BRDF of the forest and the tur-
bid medium-type BRDF of the grassland. Adjacency ef-
fects are neglected, which is admissible unless the mosaic
is very �ne or the zenith angle very large. But even in
a homogeneous scene, volume and surface scattering may
still be both present. For example, in a forest canopy
the geometric scattering is given by the inter-crown gaps,
whereas the volume scattering is given by the gaps be-
tween the leaves. The superposition then describes �rst
and second-order scattering, while neglecting the coupling
of the two. From a practical standpoint, it is perhaps
most accurate to say that the BRDF observed is decom-
posed into the two components represented by the two
basic types of scattering. Volume and surface scattering
produce BRDF functions that are semi-orthogonal due to
an increase in re
ectance with zenith angle in the former
and a decrease in the latter case.

Kernel-driven models have been proven successful in
application to AVHRR, advanced solid state array spectro-
radiometer (ASAS), laboratory and �eld-measured multi-
angular re
ectance data and have been shown to �t ob-
served BRDF data well [ Roujean et al., 1992; Leroy and

Roujean, 1994; Wu et al., 1995; Wanner et al., 1995b;
[Privette and Vermote, 1995; Strahler et al., 1995c; Li et
al., 1996; Barnsley et al., 1996b; Hu et al., 1996; White
et al., 1996]. Some examples of the latter will be given in
section 5. A kernel-based model is also being used for the
BRDF/albedo product of the polarization and directional-
ity of the earth's radiation (POLDER) project [Deschamps
et al., 1994; Leroy et al., 1996].

3.4. The Ambrals BRDF Model

The kernel-based BRDF model to be used for production
of the MODIS BRDF/albedo product was chosen to be
the Ambrals BRDF (Algorithm for MODIS bidirectional
re
ectance anisotropy of the land surface) BRDF model,
as de�ned by the kernels used in it. The rationale for
choosing this model is given in section 3.5. The kernels
used are based on theory by Roujean et al. [1992], Ross
[1981], Li and Strahler [1992], Li [Strahler et al., 1994;
Wanner et al., 1995a] and Cox and Munk [1954].

The Ambrals model provides two choices each for the
volume scattering and the surface scattering kernel. The
kernels to be used in a particular case depend on the
characteristics of the multiangular observations available.
The two kernel expressions derived for volume scattering
are based on two di�erent approximations to a single-
scattering radiative transfer theory of Ross [1981], one for
large values of the leaf area index (\thick" approxima-
tion) [Roujean et al., 1992], one for small values (\thin"
approximation) [Wanner et al., 1995a]. For geometric sur-
face scattering, two types of Li-kernels are available. These
were derived from the geometric-optical mutual shadowing
BRDF model for forest canopies by Li and Strahler [1992].
The �rst of these is an approximation for \sparse" spacing
of discrete objects (crowns), the second for \dense" spac-
ing of objects (crowns) [Strahler et al., 1994; Wanner et

al., 1995a]. The Li-sparse kernel is mainly driven by the
way shadows emerge and are hidden in the scene, while the
Li-dense kernel is dominated by the sunlit crowns as seen
under conditions of mutual shadowing in both viewing
and illumination directions. For MODIS BRDF/albedo
processing, the Li-sparse kernel is formulated to represent
spheroids that are relatively close to the ground (b=r =
1, h=b = 2, where b is the crown vertical radius, r the
crown horizontal radius, and h the height to center-of-
crown). The Li-dense kernel is formulated to represent
prolate crowns that are situated some distance above the
ground (b=r = 2:5, h=b = 2). For general use of the
Ambrals model, other choices of these parameters can be
made.

In cases where the forward-scattering direction of the
BRDF has been sampled, a Cox-Munk kernel has been de-
veloped [Strahler et al., 1995a, update] to model contribu-
tions from sub-resolution water bodies, 
ooded �elds, and
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melting ice. This kernel is based on a theory of sunglint
on the ocean by Cox and Munk [1954]. A wind speed pa-
rameter of 5 m/s is used.

Figure 2 shows the shape of these �ve Ambrals model
kernels on the principal plane for three di�erent solar zenith
angles. Kernels may be normalized before use to have com-
parable ranges of values or integrals. Note that volume
scattering and surface scattering kernels are, to a large
degree, linearly independent.

Using these kernels, the Ambrals BRDF model can
acquire �ve distinct forms, Which allows good �ts to the
variety of BRDF shapes expected from global BRDF ob-
servations at the kilometer scale. The Ross-thin kernel is
combined with either the Li-sparse or the Li-dense ker-
nel, as is the Ross-thick kernel. The Cox-Munk kernel
is combined with the Li-sparse kernel. These �ve model
variants, also listed in Table 2, will be used to produce the
MODIS BRDF/albedo product. Tests have shown that for
a variety of land cover types at least one of these models
provides a good �t, although for some land cover types
several models may do well due to the fact that they share
the kernel that accounts for most of the BRDF shape (see
section 5 of this paper, and [Wanner et al., 1995b, Hu et
al., 1996]).

3.5. Rationale in Choosing the Ambrals

BRDF Model

Quite a number of BRDF models are available in the lit-
erature, ranging from simple empirical to rather complex
numerical models that more closely represent the phys-
ical features of the plant types being modeled (Strahler
[1994] gives an overview). The majority of these were
derived from a forward-modeling perspective. Geomet-
ric and optical properties of vegetation are used to com-
pute the most prominent features of radiation scattering
and shadow casting in plant canopies, and to derive the
BRDF. While being very valuable in providing an insight
into the physics of the interaction of light with vegetation,
they are not ideally suited for remote sensing applications.
Forward modeling represents a bottom-up approach, while
remote sensing requires dealing with the inverse problem.
The perspective that needs to be at the core of the mod-
eling is top-down.

The rationale for choosing the Ambrals BRDF model
for the operational inversions of MODIS BRDF/albedo
processing is outlined by four requirements that were met
by this model.

(1) The model is required to be re
ectance-based to
eliminate the need to rely on ancillary databases of vege-
tation properties, soil brightnesses, etc. Global databases
of these properties do not exist currently with the required
spatial resolution and mostly are of unknown quality. Fur-
thermore, the approach chosen should be 
exible enough

to model the BRDFs of the major types of vegetation and
non-vegetated surfaces. This, to some extent, precluded
the use of just one single BRDF model for all land cover
types.

The Ambrals model meets these requirements in that
the inversion of three parameters is achievable from the
available multiangular sampling, and that no additional
parameters need to be pre-determined. It has been suc-
cessfully applied to a number of observed BRDF data set
[Privette and Vermote, 1995; Strahler et al., 1995c; Wan-
ner et al., 1995b; Hu et al., 1996; White et al., 1996]. A
similarmodel is to be used for operational BRDF retrievals
or POLDER [Leroy et al., 1996].

(2) The model used should be robust in several re-
spects. It should be robust with respect to inversion from
limited angular sampling and robust against noise in the
input data. It is essential that it should not assume that
the pixels viewed possess a homogeneous land cover (an as-
sumption implicit in most BRDF models). Globally, the
number of mixed pixels heterogeneous at the 100-meter-
scale is large. Also the BRDF model needs to be able to
model BRDF e�ects caused by hilly and rugged topogra-
phy and by rough soil surfaces.

Due to the top-downmodeling approach taken in kernel-
driven models, discussed in the previous section, the Am-
brals BRDF model meets these requirements well. Noise
sensitivity is discussed in section 3.7.

(3) There should be a mathematically clear way of
scaling the model spatially. The MODIS BRDF/albedo
product will be generated at a spatial resolution of 1 kilo-
meter, but the results may be applied at coarser reso-
lutions up to climate-model resolutions of 2.5 degrees or
more. Since the BRDF is a nonlinear function of at least 3
angles, such spatial scaling is not a straightforward opera-
tion, and neither is the spatial averaging of albedos when
taking a varying BRDF e�ect into account.

The Ambrals model scales spatially due to its linear
properties: the parameters of the model at a coarser spa-
tial scale may be expressed through weighting of the pa-
rameters of each kernel according to their proportion of
area. This will allow degrading the MODIS BRDF/albedo
product to any resolution desired for a speci�c modeling
purpose.

(4) The model must have a speedy inversion. This ex-
cludes the use of numerical inversion techniques, typically
required for the inversion of physical and numerical BRDF
models (cf. Goel [1989]). Currently, only a model that has
a mostly analytical inversion is a feasible candidate.

The Ambrals model may be inverted analytically by
solving the set of linear equations derived from minimiz-
ing an appropriate error function through matrix inversion
[Lewis, 1995]. The model inverts extremely rapidly for this
reason and is consequently ideally suited for large-scale
global BRDF inversion.
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3.6. Albedo From MODIS

The in
uence of atmospheric state on the radiative 
uxes
at the surface becomes an issue when deriving albedo.
Albedo is de�ned as the ratio between the hemispheri-
cal upwelling and downwelling 
uxes, the latter depending
on the amount of di�use scattering occurring in the atmo-
sphere due to its aerosol and water vapor load. This makes
the albedo itself dependent on the atmospheric state at
the time of observation. Albedo in this form, while char-
acterizing accurately the radiative 
uxes at the time of ob-
servation, is not directly usable in biospheric and climate
modeling, where the atmosphere applied and/or computed
may be di�erent from that observed and may vary as a
simulation proceeds. What is needed for modeling is an
average or hemispherical re
ectance in form of an intrin-
sic surface property that is not dependent on a particular
atmosphere and time.

In order to meet this demand, the MODIS BRDF/albedo
product will provide two measures of albedo in form of the
directional-hemispherical and bihemispherical integrals of
the BRDF, derived through the Ambrals BRDF model
from atmospherically corrected re
ectances. These albedo
measures then are intrinsic properties of the surface. They
represent the following two cases. The directional-hemispherical
integral (4), called the \black-sky albedo," represents the
case of single-beam irradiation in the absence of di�use
skylight, that is, the situation of a perfectly clear sky. The
bihemispherical albedo, called the \white-sky albedo," given
by (6), with �s replaced by �b and the integration over �s,
represents the case of perfectly di�use illumination, that
is, the case of a perfectly turbid atmosphere, similar to
an overcast situation. The albedo under conditions of at-
mospheric scattering of light will then be a value between
these two extreme cases and depend on the actual aerosol
and water vapor loading.

It may be noted that the black-sky albedo is a func-
tion of solar zenith angle, whereas the white-sky albedo is
a constant. It is an advantageous property of kernel-based
models that the black-sky albedo may be formulated as
a linear combination of the BRDF model parameters and
the black-sky integrals of the kernels. Since these inte-
grals may be pre-computed and tabulated, the black-sky
albedo can be generated from known model parameters
at any solar zenith angle without numerical integration
[Lewis, 1995] using a very compact look-up table that will
be provided with the product.

Black-sky and white-sky albedo will be given in all
seven MODIS land bands, spanning from 0.47 to 2.13�m.
They will also be derived in three broad bands, from 0:4�
0:7 �m, 0:7 � 3:0 �m, and 0:4 � 3:0 �m, which are use-
ful to climate modeling, where the wavelength domain is
commonly partitioned in this manner [Dickinson, 1983].
In the shortwave region, vegetation dominantly absorbs

radiation, whereas in the longerwave region it is mainly
scattered. Broadband albedos are not simply spectral av-
erages of the albedo. They are de�ned such that, given
a downwelling broadband 
ux, the corresponding broad-
band upwelling 
ux is derived.

Narrowband-to-broadband albedo conversion will be
achieved by weighting the narrowband albedos by their as-
sociated proportion of downwelling solar irradiance. This
method has been used with nadir Landsat measurements
[Brest and Goward, 1987] and was shown to be satisfac-
tory by Ranson et al. [1991], although Starks et al. [1991]
report a case where a signi�cant bias occurred. Since the
downwelling solar irradiance depends on the atmospheric
state during observation there is an undesirable depen-
dence of the broadband albedos on that state. We cur-
rently are considering resolving this situation by using the
irradiance found from applying molecular scattering alone
(clean-sky case). However, the spectral albedos will be
provided by the MODIS BRDF/albedo product as well,
so individual researchers will always be able to carry out
their own conversions.

Table 3 shows sample results illustrating the potential
accuracy achievable in narrowband-to-broadband albedo
conversion using the 7 MODIS land bands for three di�er-
ent land cover types. The broadband albedos derived from
splines to the spectral values are within 1 or 2 percent of
the real values.

3.7. Sensitivity of BRDF and Albedo Re-

trievals to Angular Sampling and Noise

The behavior of the Ambrals BRDF model under inversion
was studied in detail under conditions of angular sampling
as expected from MODIS and MISR. Two types of studies
were carried out. The �rst is a study of the in
uence of
random noise on the accuracy of the inversion. The second
is a study of how well a BRDF derived from a limited
set of angular re
ectances interpolates and extrapolates
to angles not observed. Both of these extensive studies
will be reported in full detail elsewhere. Here, only a brief
overview over the main results can be given.

Both the noise sensitivity and the interpolation/extra-
polation accuracy study were conducted using simulated
16-day MODIS and MISR cloud-free viewing and illumi-
nation geometries simulated by the Xsatview software by
Barnsley and Morris [Barnsley et al., 1994]. Investigations
were carried out as a function of latitude and day of the
year. The quantities studied were nadir-view re
ectance
and black-sky albedo at the prevailing mean sun angle of
observations (\interpolation") and for a �xed nadir or 10�

sun zenith angle (\extrapolation"). White-sky albedo and
the model parameters themselves were also investigated.

The noise sensitivity study was carried out by taking
advantage of the linear mathematical properties of kernel-
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driven models that allow an analytical analysis following
methods developed by Gauss [Whittaker and Robinson,
1960]. The diagonal elements of the inversion matrix found
in the minimization problem, which depend only on the
kernel values at the angles sampled, may be used to com-
pute so-called \weights of determination," or \noise in
a-
tion factors" [Wanner et al., 1996]. These factors indicate
how random uncertainty in the re
ectances sampled trans-
lates into uncertainty in the BRDF and in albedo. Noise
in
ation factors depend on the sampling geometry alone,
i.e., for MODIS and MISR sampling they vary with lati-
tude and time of year; but for kernel-based models they do
not depend on wavelength or the type of BRDF viewed.
The study conducted shows that both interpolated and ex-
trapolated nadir-view re
ectances and black-sky albedos
as well as the white-sky albedo have median noise in
a-
tion factors of less than 0.5, and worst values of less than
about 1, demonstrating that the inversions are stable with
respect to random noise.

In the presence of clouds, these factors are expected
to increase with the square root of the number of observa-
tions, provided that the angular coverage of the samples
does not change signi�cantly. A comparison of the Am-
brals noise sensitivity with the corresponding sensitivity of
the semiempirical 3-parameter BRDF model by Rahman
et al. [1993] shows that both models behave very simi-
larly. The study was also carried out using MODIS-only
and MISR-only sampling. Results demonstrated that the
quality of a MODIS-only product is greatly enhanced by
adding MISR data. The noise in
ation factor may be used
as a quantitative indicator of sampling quality in opera-
tional BRDF inversions and will be carried by the MODIS
BRDF/albedo product.

For the interpolation and extrapolation error study, a
three-dimensional discrete ordinate numerical BRDF for-
ward model by Myneni et al. [1992] was used to create
surface re
ectances at the angles sampled by MODIS and
MISR over 16 days. The study was carried out for BRDFs
of six di�erent biome types (grassland, shrubs, broadleaf
crops, savanna, broadleaf forest, conifers) and for red and
near-infrared wavelengths. Upon inversion of the Ambrals
BRDF model, results were compared with those known
from the forward model. At the mean sun zenith angle of
the observations the predicted nadir-view re
ectance and
black-sky albedo were found to have a median deviation
from the true value of about 3 to 4 percent. At a sun
zenith angle of 10�, re
ectance showed a median deviation
of about 6 percent, whereas black-sky albedo was accurate
to about 5 percent. This shows that while interpolation
can be carried out with good precision, extrapolation de-
pends more on favorable sampling conditions. White-sky
albedo could be determined with a median accuracy of 6
percent. Since these numbers are the results of model-to-
model comparisons, they should be interpreted with cau-

tion; problems can be due to either model. In cases with
unfavorable sampling, errors of up to 10 or 20 percent may
occur.

Table 4 summarizes the noise sensitivity and the inter-
polation/extrapolation study results. The results in both
cases are medians over all cases investigated. The ranges
given are chosen to include two thirds of all relevant data.

4. The Algorithm

4.1. BRDF/Albedo in the MODIS Produc-

tion Chain

The MODIS BRDF/albedo product is generated as part
of the surface re
ectance processing chain for the MODIS
instrument, which runs from calibration and geolocation
through atmospheric correction, gridding and resampling
to BRDF and albedo retrieval. The latter relies on atmo-
spherically corrected surface re
ectance data from both
MODIS and MISR and atmospheric coupling descriptors
for updating atmospheric corrections where necessary af-
ter the initial BRDF retrievals. Product generation is sup-
ported and gaps are �lled by having available current land
cover and topographic information, the BRDF/albedo re-
sults from the previous production cycle and a global data-
base of accumulated BRDF/albedo knowledge that will be
built over time.

MODIS level-2 re
ectances that have been cloud cleared
and atmospherically corrected are binned into the MODIS
level-3 grid over a period of 16 days and combined with all
MISR observations acquired during that time. The data
are averaged to a spatial resolution of one kilometer, where
each observation is weighted by the respective overlap be-
tween the grid cell and the observation footprint. Qual-
ity information associated with the data is translated to
quality coe�cients that are used to weight individual ob-
servations in the subsequent BRDF inversion. This allows
special consideration of data where, for example, atmo-
spheric correction was di�cult or aerosol information was
taken from standard tables because no aerosol retrievals
were available.

The directional observations thus assembled are then
analyzed by inverting the �ve model variants listed in Ta-
ble 2 to �nd the Ambrals kernel combination that describes
the observations best. BRDF model inversion is carried
out by straightforward matrix inversion. The four bands
common to MODIS and MISR are inverted �rst. The
model chosen from this analysis is then applied to the three
remaining bands, in which only MODIS data are available.
The model parameters found are written to output along
with extensive quality control data and other information
necessary for an assessment of the product. Integration of
the BRDF is carried out to provide black-sky and white-
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sky albedos. Use of a digital terrain database will allow
correction for BRDF e�ects created by topographic shad-
ing some time after the launch of AM-1. Initially, the
BRDF derived will characterize the combined BRDF of
vegetation/soil and topography.

The Ambrals model kernel combination that describes
the observations best is selected from among the �ve model
variants available as follows. Generally, the kernels to be
used will be chosen to provide the �t with the smallest
root band-averaged mean squared error (RMSE) when in-
verting the available multiangular re
ectances. The two
cases where an exception is made are if the RMSE found is
large, or angular sampling coverage is bad enough to mis-
trust the inversion, either because observations span only
a small angle range or their number is too small. In these
cases information from the supporting ancillary databases
is used to limit the inversion. If angular sampling is good
but the RMSE found is high, the kernel combination sug-
gested by the ancillary data (previous BRDF, BRDF ac-
cumulated database, land cover type, topography) is used
instead of the best-�tting model variant if the resulting
RMSE is not much worse. The model parameters are still
derived from a full inversion of the re
ectances.

If angular sampling is bad or the number of re
ectances
available is too small, a full inversion cannot be trusted
and gaps in the product would result. In this case, the
BRDF kernel combinationand model parameters suggested
by the ancillary databases will be used, but the magni-
tude of the BRDF (the isotropic constant of the model)
will be adjusted to the observed re
ectances. Through
this the shape but not the magnitude of the BRDF will be
�xed. This procedure also guarantees that the re
ectance
information available in cases not permitting a full BRDF
inversion will not be simply lost but used to the extent
possible.

In each case, the source of the resulting BRDF infor-
mation will be recorded so that users can �lter the output
according to their needs. The ancillary database accumu-
lating BRDF knowledge over time, keyed by season, and
the relationships between land cover type and BRDF used
will be established post-launch from the data observed and
updated at intervals.

Since the Ambrals model allows adapting the kernels
used to the speci�cs of the land cover types viewed by giv-
ing a choice of kernels, the mathematical expressions used
on adjacent pixels may be slightly di�erent. While this is
expected to provide the best BRDF and albedo informa-
tion on a per-pixel basis, it may also cause di�culties in
mapping between pixels and where a much simpler uni-
form approach is desired. As a consequence, the MODIS
BRDF/albedo product will always also provide the full
inversion results for the modi�ed Walthall BRDF model
[Walthall et al., 1985; Nilson and Kuusk, 1989]. This
model is purely empirical and is expected to produce re-

sults of reduced accuracy, particularly under conditions of
sparse angular sampling. But the simplicity of the math-
ematical expression used and the fact that it will be the
same for all pixels are attractive to applications where a
reduced accuracy is acceptable.

Product generation rules are the following. If less than
8 observations are available in the 16-day period, or they
are clustered in a small region of angle space, this will be
deemed insu�cient for a full inversion. Angular coverage
will be monitored through the determinant of the inver-
sion matrix, which re
ects the power of a given sampling
to discriminate the model parameters. If the looks are
all at very high zenith angles, production continues but
the appropriate quality 
ags are set to indicate this situ-
ation. Similarly, the quality of the product will be lower
if no MISR data are available. If the supporting inputs
of land cover, digital terrain and ancillary accumulated
BRDF database are not available, production continues
with lower quality, since these inputs are supportive only.
No BRDF is derived over oceans or inland water, although
pixels with subresolution water content will be processed.
For snow we expect the Ross kernels to apply, but this will
be investigated. Processing of areas covered by sea ice is
under consideration.

Details about the algorithm, its theoretical basis, and
its dependence on other products may be found in the
NASA Algorithm Technical Basis Document [Strahler et
al., 1995a], available on the internet at http://spso.gsfc.-
nasa.gov/atbd/pg1.html.

4.2. Output Product and Quality Flags

BRDF inversion results will be given in form of identi-
�ers determining the Ambrals model kernel combination
used for each pixel and the list of model parameters found
for each band for the Ambrals and the modi�ed Walthall
model. Black-sky albedo at any solar zenith angle and
white-sky albedo for both models can be constructed with
almost no computational e�ort directly from the model
parameters using a small look-up table of precomputed
kernel integrals that will be provided to users with the
product. Broadband albedos will be given in a similarly
parameterized form.

Quality and product information will be comprised of
the following: an overall quality indicator; a 
ag detail-
ing the source of the BRDF given (new full inversion,
limited inversion or taken from ancillary database); the
quality of the �t over wavelengths; view and sun angle
coverage; the mean sun angle of the observations; 
ags in-
dicating whether topographic e�ects are expected in the
BRDF, whether MISR data was available and whether
atmospheric correction was updated; and the land/water
and data availability mask. The RMSE of the inversions,
a quantitative descriptor of the quality of the angular sam-
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pling found, and a parameter describing the relative con-
tribution of surface and volume scattering to the scene are
also recorded.

In addition to this one-kilometer BRDF/albedo prod-
uct, a product spatially degraded to a quarter-degree res-
olution will be produced for direct use in climate models.
This product will also carry information on the subgrid
variability of albedo.

4.3. The Ambrals BRDF Inversion and

Modeling Tool

The production algorithm has been programmed to pro-
vide maximum e�ciency through avoiding multiple evalu-
ation of expressions shared by several kernels, and through
look-up table approaches to kernel value retrieval and albedo
calculations. One 16-day BRDF/albedo product at full
resolution and in all seven bands will have a total �le size
of approximately 35 GByte. This size also applies to the
BRDF knowledge database to be created. The process-
ing power required to produce the 16-day product in real-
time is currently estimated at about 300 million 
oating
point operations per second. Preparing the input data for
BRDF/albedo processing requires additional resources.

A user working with the product will need to be able to
reconstruct the BRDF from the parametrization provided
by the MODIS BRDF/albedo product. For this, an al-
gorithm is required that allows forward modeling of each
of the models used in the inversion. The Ambrals code
will be provided in a form that allows forward and inverse
BRDF modeling of kernel-driven models, provides a selec-
tion of science options, numerical BRDF integration, and
permits easy adding of new models. This code can also be
used to degrade the product to coarser spatial resolutions
and derive the corresponding albedos. The Ambrals code,
together with a user guide, is presently available from the
authors upon request for BRDF modeling work and prepa-
ration of BRDF-dependent algorithms.

5. Validation

5.1. Validation Outline

Validation of the BRDF/albedo product will be performed
in three respects. First, the semiempirical BRDF models
need to be validated for as many types of land cover as pos-
sible to assure that they provide adequate mathematical
descriptions of occurring BRDF shapes. This is done us-
ing �eld-measured, laboratory-measured and numerically
simulated BRDFs.

Second, large-scale BRDF and albedo retrievals need
to be demonstrated given the constraints of sampling, at-
mospheric correction and temporal composition of data
occurring in a remote sensing situation. This is done

using multiangular data from airborne sensors and from
AVHRR.

Third, the quality and accuracy of the product need
to be monitored during post-launch product generation.
This validation will be part of a MODIS-wide and EOS-
wide validation and quality assurance e�ort based on tower
measurements, aircraft campaigns and intercomparisons
with the results obtained from other space-based sensors.

5.2. Model Validation

Basic model validation was carried out by applying the
Ambrals BRDF model to multiangle re
ectance data mea-
sured in the �eld for a variety of land cover types. Here
we demonstrate this work by giving a few examples, se-
lected to represent four distinct categories of land cover
types: forests; barren or sparsely vegetated lands; grasses
and grasslike crops; and broadleaf crops. The data sets
used include two soybean data sets observed by Ranson et
al. [1985] using an Exotech Model 100 radiometer. They
represent canopy coverages of 72 and 99 percent and solar
zenith angle ranges from 20� to 49� and 31� to 61�, re-
spectively. Inversion was carried out using all four bands
observed, including the red and near-infrared. An aspen
and a spruce forest data set were selected from measure-
ments byDeering et al. [1995] using a PARABOLA instru-
ment, and the red and near-infrared channel were used for
inversions. The solar zenith angle range was 45� to 59�

and 36� to 59�, respectively. All other data were acquired
by Kimes [1983] and Kimes et al. [1985, 1986] at solar
zenith angles ranging from 25� to 79�, varying from one
data set to another. The whole of the viewing hemisphere
was sampled for all data sets.

Evaluations were carried out for the red and near-
infrared (NIR) channels. Table 5 lists the data sets, gives
the model with the lowest root of the band-averaged squared
deviation between modeled and observed re
ectances (RMSE),
and the coe�cients of linear correlation between the mod-
eled and observed re
ectances in the red and in the NIR
band. The RMSEs are found to be between 1.1 and 4.6
percent, which is satisfactory, and the correlation coe�-
cients commonly are larger than 0.8 or even 0.9. These
results are typical for those found for a number other data
sets (including AVHRR, airborne POLDER, ASAS and
�eld-measured data) using variants of the Ambrals model
used here [Privette and Vermote, 1995; Hu et al., 1996;
White et al., 1996]. The corn data set has rather large
irregular variations in the observed re
ectance, which ex-
plains the low red band correlation coe�cient for this one
data set.

Figure 3 shows the correlation between observed and
modeled re
ectances for one example from each of the four
land cover groups. Even though there are some deviations,
the modeled re
ectances generally follow the observed val-
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ues. It is interesting that the unvegetated plowed �eld
data set is described well by the geometric-optical theory
of shadowing provided by the Li-sparse kernel. This is not
unexpected. Geometric-optical theories are based on rela-
tive geometric proportions and thus scale, and the plowed
�eld consists of shadow-casting clumps of earth sitting on
the ground. Note that in the cases of irrigated wheat and
the plowed �eld there are some re
ectances that are no-
ticeably larger than the others, and that these are modeled
correctly.

Figure 4 shows the RMSE for each of �ve BRDF mod-
els tested for three examples of each land cover group (the
Cox-Munk/Li-sparse model was not used since it is only
applicable to scenes involving a water component). Obvi-
ously, all data sets are �t well by at least one of the models.
In a number of cases, one type of model �ts the data better
than another. Examples include the models containing the
Li-sparse kernel for the barren or sparsely vegetated land
cover types, the Li-dense kernel for the hardwood forest,
and the Ross-thick kernel for the orchard grass and the
second soybean data set. In some other cases, all models
provide good �ts, as for the aspen data set, the grass lawn,
and the corn. This may be explained by a low variance
of re
ectances in the particular angular ranges sampled,
which places a large emphasis on the isotropic constant
of the models. The empirical modi�ed Walthall model
performs fairly well in some cases, showing a lower RMSE
than the best semiempirical model. But this result is valid
for the relatively good angular sampling that characterizes
these validation data sets. Remotely sensed data will be
much sparser in angle space, which is when the physical
basis of the semiempirical models will give them an im-
portant advantage.

An important question is whether the di�erences in
the RMSE found between model variants translate to no-
ticeable di�erences in derived re
ectances and albedos. If
this were not the case, all model variants could be consid-
ered equally capable of modeling the BRDF of di�erent
land cover types, and using only one of them would be
su�cient. But there is indeed a di�erence between kernel
combinations. Figure 5 shows this for two examples, the
hardwood forest data and one of the soybean datasets. In
the forest case, the models containing the Li-dense kernel
clearly have a smaller RMSE. But the white-sky albedo is
nearly the same for all model variants. This may be caused
by the term cos �v sin �v cos �i sin �i that occurs in the bi-
hemispherical albedo integral. Values of the BRDF at very
small and very large zenith angles, where the dependence
of the BRDF on angle is strongest, have only a weak e�ect
on the albedo. In the case of the soy dataset, however, the
opposite e�ect occurs. There is a noticeable di�erence in
albedo between models based on the Ross-thin and those
based on the Ross-thick kernel even though the RMSEs of
all model variants are similar.

The isotropic model constant fi (nadir sun and view
re
ectance) shows, in this example, large di�erences be-
tween model variants for the case where the albedo varies
little, but only small variation in the case where the albedo
di�ers across kernel combinations. These and similar �nd-
ings for other datasets lead to the conclusion that choosing
the correct model is important for generating accurate re-
sults. Using just one BRDF model or model variant will
lead to results of varying quality for di�erent land cover
types. This situation will be aggravated under conditions
of more limited sampling than is the case for these well-
sampled �eld-measured data sets.

The feasibility of using kernel-based semiempiricalmod-
els for modeling bidirectional re
ectance data has also
been shown by several authors using a model similar to
the Ambrals model, employing the Ross-thick kernel and
a geometric-optical kernel by Roujean et al. [1992]. Leroy
and Roujean [1994] were able to correct noise-like tempo-
ral variations in AVHRR data that were due to varying
angles of observations. Wu et al. [1995] successfully mod-
eled AVHRR data for several di�erent land cover types.
Li et al. [1996] are able to remove mosaicking borders
from an AVHRR NDVI image of Canada that were due to
directional di�erences between overpasses. Privette and
Vermote [1995] conclude that kernel-based models of the
Ambrals model type perform satisfactorily for atmospheric
correction purposes on an AVHRR desert scene. Barnsley
et al. [1996b] apply the Roujean model and the modi�ed
Walthall model to multiangle images obtained by ASAS
during the HAPEX-Sahel campaign. They show that the
�rst parameter of the semiempirical model, which is the
re
ectance for nadir view and sun, is the most stable pa-
rameter in the retrieval and matches spatially with the
nadir-view images acquired. Maps of albedo are produced
from the model inversions. Inversions of a soybean and
a nasturtium dataset observed in a Chinese laboratory
that acquires rapid multiangle re
ectance measurements
has produced satisfactory results both when angular sam-
pling was dense and when it was sparse [Strahler et al.,
1995c].

The conclusions to be drawn from these validation
investigations are the following. First of all, the kernel-
driven semiempirical Ambrals BRDF model to be used in
the MODIS BRDF/albedo algorithm is capable of �tting
bidirectional re
ectance data sets well. Second, di�erent
kernel combinations �t di�erent data sets best. Using a
small number of distinct kernel variants is therefore ad-
visable if both albedo and the BRDF are to be derived
with low errors. And �nally, the modi�ed Walthall model,
to be used as a uniform model parallel to the Ambrals
model, is capable of �tting the data sets tested here as
well, but it is expected to perform less well for inversion
of the more limited angular sampling encountered from
MODIS/MISR.
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Additional �eld-measured BRDF data sets are expected
to be available for continued model validation. The BRDF
laboratory in Changchun, China, [Strahler et al., 1995c;
Liang et al., 1996] will provide additional BRDF measure-
ments in the future. Data acquired during the BOREAS
campaigns are beginning to be available, such as the PARA-
BOLA data sets by Deering et al. [1995], two of which
were used in this paper. Arti�cial data sets have been
created by So�er et al. [1995] using model trees in a labo-
ratory, and by Lewis and Muller [1992] using Monte Carlo
ray-tracing. BRDF data sets generated numerically for
several di�erent biome types from a 3D-radiative transfer
code by Myneni et al. [1992] are being employed for a
detailed study of model properties that will be reported
elsewhere.

5.3. Relationship of BRDF to Land Cover

In Figure 4, there is an indication of distinctive patterns
characterizing each land cover type group. In the case of
the hardwood forest, clearly the two models involving the
Li-dense kernel are much favored over those involving the
Li-sparse kernel. This corresponds to the fact that the
forest observed was indeed dense in nature. There is little
di�erence between the model using the Ross-thick kernel
and the model using the Ross-thin kernel. This may be
explained by the fact that scattering is dominated by geo-
metric optics, leading to a small weight given to the volume
scattering kernel. It does not matter which one is chosen.
The case is less clear for the pine and the aspen data sets,
but the aspen does show a slight improvement of �ts if
the Ross-thick kernel is used. Although it might well be
expected from the scene type, this data set lacks a distinct
hotspot, perhaps due to instrument characteristics.

All the examples given for barren or sparsely vege-
tated covers show a distinct preference for the Li-sparse
kernel, which is driven by shadowing. The plowed �eld
consisted of clumps of earth on the ground, leading to
strong surface scattering e�ects. The annual grass data
set was acquired at a site with less than 5 percent of veg-
etation cover, where 40 percent of the surface was covered
by stones and pebbles [Kimes and Sellers, 1985]. The
steppe grass site had clumps of grass, and the total cover
was 18 percent. Obviously, the structured surface of these
land covers is best represented by strong shadow-driven
geometric-optical scattering.

Two of the three data sets given for dense grasses and
grasslike crops show a preference for models containing
the Ross-thick kernel, as might be expected for dense hor-
izontally layered canopies that show little shadowing. In
the broadleaf crops group, two of the three examples given
are modeled well by all models. They lack angular varia-
tion in the angle intervals sampled, resulting in a strong
isotropic contribution to overall �tting that renders the

contributions from the respective kernels less important.
One set, however, shows the in
uence of both shadowing
and volume scattering in being modeled best by the Ross-
thick/Li-dense model.

We think that there is an indication in this data that
where mutual shadowing of crowns plays a role, as in
most forests, models containing the Li-dense kernel will be
chosen, whereas in scenes where shadows are dominant,
models using the Li-sparse kernel are preferred. These
scenes would then be sparse forests or brushlands, and
rock-strewn deserts, rough (plowed) terrain or clumped
vegetation, respectively. When the Ross-thick kernel is
chosen over the Ross-thin kernel, or all models perform
well, a dense layered canopy with no individual crowns is
observed. The Ross-thin kernel is expected to be applica-
ble to scenes with a thin but horizontally continuous layer
of leaves over a rather solid background, which can be the
ground or dense underlying vegetation.

Table 6 summarizes these correspondences in a tenta-
tive list of land covers likely to be associated with mod-
els containing speci�c kernels. Whether the relationships
speculated upon here hold with any consistency, and whether
the di�erences are distinct enough to allow reliable infer-
ence of surface structural properties, remains to be seen
when much more extensive data sets than are now avail-
able can be studied. But the fact that surface structure
determines the angular dependence of the re
ectance, as is
known from physical re
ectance forward modeling, should
make a retrieval of at least general structural informa-
tion of the type discussed here possible [Goel, 1989; Pinty
and Verstraete, 1991]. If the classes obtained from such
an analysis are not congruent with the classes derived
from spectral land cover classi�cations, the combination
of directional and spectral information should allow for
more accuracy in land cover classi�cation. An example is
the distinction between dense and sparse forests, or be-
tween dense brush and sparse forest, which may have sim-
ilar spectral properties but distinct bidirectional charac-
teristics. A study by Barnsley et al. [1996a] shows that
while the spectral information content of a scene of arable
farmland obtained with the airborne multispectral scanner
Daedalus is greater than the directional information con-
tent, the multiangle properties of the data nevertheless
provide an important means of distinguishing between the
occurring land cover types. For this reason, the MODIS
land cover product will make use of BRDF-derived infor-
mation where feasible [Strahler at al., 1995b].

5.4. Pre-Launch Product Prototyping

Several projects are close to completion that apply the
Ambrals BRDF model to AVHRR data over large regions,
demonstrating and testing the MODIS algorithm. It is be-
yond the scope of this paper to report this work in detail.
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A study led by d'Entremont [d'Entremont et al., 1995,
1996] is targeted at inversions of AVHRR multiangle im-
agery for the whole of New England. Maps of albedo and
kernel combinations chosen have been derived. A project
conducted by Lewis includes large-area AVHRR data in-
versions for di�erent times of the year for the Sahel region
of Africa. A similar investigation, led by X. Li, is under
way for a large area surrounding the site of Three Gorges
dam project on the Yangtse river in China. These sci-
enti�c studies, which also serve to prototype the MODIS
BRDF/albedo product, demonstrate the feasibility of the
approach and have been successful in generating BRDF
and albedo images of large areas. Validation of the re-
sults obtained is the next step. In the Sahel region, for
example, both ground-measured and airborne sensor mul-
tiangular data have also been evaluated for comparison.

Other sources of large-area data that will be used when
they become available are data from the POLDER instru-
ment, launched in August 1996, and the SPOT-VEGE-
TATION sensor, also to be launched before the AM-1
platform. These data sets, observed from space, will be
complemented by more limited datasets acquired from air-
borne sensors. Here, several campaigns have been car-
ried out and will be carried out in the future with the
ASAS, the MODIS airborne simulator (MAS), the com-
pact airborne spectrographic imager (CASI) and the air-
borne POLDER sensors over a variety of sites. Work on
processing these data is under way. Semiempirical models
will be and are being applied to these data sets to opti-
mize the algorithm for deriving BRDF and albedo from
MODIS/MISR. AirMISR is a MISR-like instrument that
will be very relevant to BRDF studies once it is operational
in 1997.

5.5. Post-Launch Product Validation

In the post-launch phase, a coordinated e�ort for validat-
ing the radiometric products of MODIS and EOS as a
whole will be undertaken. Validation of BRDF and albedo
is tied into validation of calibration, atmospheric correc-
tion, and several higher-order products. This e�ort is cur-
rently being developed in the EOS project.

A number of tower sites will be equipped with ra-
diometers monitoring upwelling and downwelling radiances
on a continuous basis. At a minimum, these sensors will
record broadband hemispherical 
uxes. Spectral measure-
ments will be made whereever possible. A selected num-
ber of sites will also feature directional measurements. The
status of the land cover around the towers and atmospheric
properties over the towers will be measured simultane-
ously. Tower sites will be chosen to represent major land
cover types. One problem with many current sites observ-
ing aerosols, for example, is that little attention is given
to the upward 
uxes coming back from the surface (e.g.,

rooftop instruments will not do).

The observations obtained at a tower site will be scaled
to the footprint size of the space-based sensor through oc-
casional aircraft over
ights that relate site properties to
surrounding areas. Additionally, sites will be chosen to
be homogeneous in land cover type. Scaling may also be
inferred from using data from sensors with di�erent reso-
lutions.

An important part of post-launch product monitoring
will also be cross-comparing the MODIS BRDF/albedo
product with the corresponding MISR surface product and
the POLDER BRDF and albedo product. Use of data
comparable data from meteorological satellites for valida-
tion purposes will also be investigated.

6. Conclusions

Surface re
ectance is a key quantity in optical remote sens-
ing. A multitude of derived parameters and estimates are
based on surface re
ectance, for example land cover clas-
si�cations, snow and ice maps, and vegetation state pa-
rameters. However, since the re
ectance of the land sur-
face is anisotropic in nature, retrieval of the bidirectional
re
ectance distribution function is essential for an exact
interpretation of the data, and for characterizing average
re
ectance in form of albedo measures. In addition, BRDF
and albedo are required for accurate computations of ra-
diative transport in the atmosphere, providing the direc-
tional characteristics and the magnitude of scattering at
the lower boundary. This is of importance in atmospheric
correction and in the radiation transfer schemes of climate
and weather models.

The MODIS BRDF/albedo product will provide this
information to a wide variety of users as part of the EOS-
MODIS standard product catalogue. The expected uses
comprise correction of images for directional e�ects; stan-
dardizing images to common viewing and illumination ge-
ometries; deriving vegetation indexes free of directional
e�ects; providing lower boundaries for atmospheric cor-
rection and radiation budget investigations; retrieving pre-
cise measures of land surface albedo; inferring land surface
structural characteristics, especially of vegetation and to-
pography; and as an input to land cover classi�cation. A
possible future application is in cloud detection.

The MODIS BRDF/albedo product will employ the
Ambrals kernel-based semiempirical BRDF model, mak-
ing use of a total of �ve di�erent available kernel functions,
and the modi�ed Walthall model for modeling the multi-
angle data. These models have been shown to �t a variety
of observed multiangular data sets well. Besides possess-
ing bene�cial computational qualities, such as analytical
inversion, direct spatial scaling and generic accommoda-
tion of mixed pixels, their physical basis allows for credible
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extrapolation of the BRDF to angles not covered by the
observations. The BRDFs found will be integrated to pro-
vide integral measures of albedo that do not depend on
atmospheric state.

The combination of these activities, it is hoped, will
contribute to the goal of EOS, to further the understand-
ing of the earth system in a time of potentially large changes
induced by human activity. The production of a routine
global BRDF and albedo product will lead to an increased
understanding of the role that directional anisotropy in
the re
ectance of the earth's surface plays in the global
energy system.
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Table 1: Percent RMS Error Ranges in BRDF and Bihemispherical Albedo Retrieval Using Lambertian and
Non-Lambertian Assumptions in Atmospheric Correction and Di�erent Optical Depths � .

� = 0:15 � = 0:30 � = 0:50
Band Lambertian non-Lamb. Lambertian non-Lamb. Lambertian non-Lamb.

BRDF red 2.3{5.2 0.4{1.3 5.9{10.6 0.7{2.9 7.4{16.2 1.6{5.9
NIR 1.5{5.7 0.1{0.7 2.7{7.7 0.4{2.5 4.1{14.2 1.2{6.2

Bihem. red 1.8{7.1 0.2{1.4 0.8{9.5 0.3{1.7 1.8{14.6 0.3{3.6
Albedo NIR 1.0{1.9 0.2{0.8 1.0{3.0 0.3{0.6 0.5{5.1 0.5{1.5

The ranges given correspond to three di�erent shapes of the BRDF: one that is dominated by volume scattering,
one that is dominated by surface scattering, and one that is a mix of the two.

Table 2: Ambrals Model Kernel Combinations to be Used in Generating the MODIS BRDF/Albedo Product.

Model Applicable Scene Type LAI b=r h=b

1. Ross-thin/Li-sparse scenes dominated by weak volume low or 1.0 2.0
scattering and simultaneous very high
shadowing

2. Ross-thin/Li-dense scenes dominated by weak volume low or 2.5 2.0
scattering and simultaneous very high
mutual shadowing

3. Ross-thick/Li-sparse scenes dominated by volume moderate 1.0 2.0
scattering and simultaneous
shadowing

4. Ross-thick/Li-dense scenes dominated by volume moderate 2.5 2.0
scattering and simultaneous
mutual shadowing

5. Cox-Munk/Li-sparse scenes dominated by shadowing N/A 1.0 2.0
and simultaneous forward
scattering

Note that for each model, the weights attributed to the individual kernels can still range from making volume scatter-
ing dominant over surface scattering or vice versa. This may be due to the respective areal proportions of the scene
components, or to a mix of the two scattering types in a homogeneous scene.
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Table 3: Spectral-to-Broadband Albedo Conversion: Accuracy of Results Based on 7-Band Splines as Com-
pared to Exact Results.

Exact Results Band-Based, Deviations
Cover total vis IR total vis IR
Type 0.4-2.2�m 0.4-0.7�m 0.7-2.2�m 0.4-2.2�m 0.4-0.7�m 0.7-2.2�m
grass 0.22 0.058 0.34 -0.9% +0.5% -1.2%
soil 0.18 0.10 0.24 -0.4% -3.2% +0.4%
snow 0.84 0.99 0.72 -2.1% -0.2% -4.0%

Table 4: Expected BRDF/Albedo Product Accuracy: Median Values and Ranges for 16-Day MODIS and
MISR Sampling at Di�erent Latitudes and Times of Year.

Quantity Investigated Noise In
ation Interpolation/Extrapolation
Factor Error (percent)

Interpolation nadir re
ectance 0.21 (0.18{0.28) 3.3 (0.7{8.1)
(sun zenith = black-sky albedo 0.17 (0.15{0.20) 3.1 (0.5{9.6)
mean of obs.)

Extrapolation nadir re
ectance 0.45 (0.17{1.08) 5.9 (0.8{28.7)
(sun zenith = black-sky albedo 0.23 (0.18{0.49) 4.8 (0.8{16.0)
nadir/10�)

Combined white-sky albedo 0.31 (0.17{0.82) 6.0 (1.4{14.2)
(all sun zeniths)
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Table 5: Sample Ambrals Model Fit Accuracies Using Field-Measured BRDFs of Several Di�erent Land
Cover Types in the Red and NIR Bands.

Cover Type Source Best-�t Kernels RMSE (%) r (red,%) r (NIR,%)

Needleleaf and Broadleaf Forests
Dense hardwood forest Kimes Ross-thick/Li-dense 3.0 0.90 0.89
Dense pine forest Kimes Ross-thin/Li-dense 4.1 0.78 0.72
Aspen forest Deering Ross-thick/Li-sparse 2.5 0.92 0.88
Spruce forest Deering Ross-thick/Li-sparse 1.1 0.95 0.94

Barren, Soil, Sparse Vegetation
Plowed Field Kimes Ross-thick/Li-sparse 1.6 0.98 0.98
Annual grass (cover. <5%) Kimes Ross-thick/Li-sparse 2.3 0.95 0.88
Steppe grass (coverage
18%)

Kimes Ross-thick/Li-sparse 2.4 0.89 0.92

Grasses, Grasslike Crops
Grass lawn Kimes Ross-thin/Li-dense 4.6 0.72 0.84
Irrigated wheat Kimes Ross-thick 3.7 0.91 0.92
Orchard grass Kimes Ross-thick/Li-sparse 3.1 0.84 0.91

Broadleaf Crops
Soybeans (coverage 72%) Ranson Ross-thick/Li-sparse 1.7 0.75 0.89
Soybeans (coverage 99%) Ranson Ross-thick 1.1 0.91 0.93
Soybeans (coverage 90%) Kimes Ross-thick/Li-sparse 4.3 0.78 0.81
Corn (coverage 25%) Kimes Ross-thin/Li-dense 2.8 0.47 0.75

Sources: Deering = Deering et al. [1995]; Ranson = Ranson et al. [1985]; Kimes = Kimes [1983], Kimes et al.
[1985, 1986].
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Table 6: Expected Relationship Matrix of Ambrals Kernels to Land Cover Types.

Models composed of
the following two
kernels (left+down):

Li-sparse kernel:
sparse distinct
crowns/objects

Li-dense kernel:
dense distinct
crowns/objects

low weight for
Li-kernels:
no distinct crowns

low weight for
Ross-kernels: no
leaf-level scattering

plowed �elds,
rock-strewn lands,
rugged topography;
mosaics of these with
sparse woodlands

dense buildings Lambertian surface

Ross-thin kernel:
thin layer of leaves

sparse woodlands or
brush, no
understory,
deciduous forests in
winter,
young broadleaf
crops

forests, dense brush;
mosaics of these with
sparse grass

sparse grass

Ross-thick kernel:
thick layer of leaves

sparse woodlands or
brush with under-
story,
broadleaf crops,
clumps of vegetation;
mosaic of grasses or
other dense layered
vegetation and trees

grasses,
dense vegetation;
mosaics of these with
forests

grasses,
grasslike crops

Cox-Munk kernel:
specular re
ectance

subpixel water, ice,
irrigated �elds with
sparse forest, brush
or rugged
topography

N/A water, ice
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Figure 1: Distribution of observations from MODIS and MISR in the viewing hemisphere. The time period
is 12 March to 28 March (16 days). The left plot is for the equator; MODIS observations are close to the
principal plane, MISR observations are on the cross-principal plane. The right plot is for a latitude of 35�

north; both MODIS and MISR are sampling away from the principal plane, with MISR a little closer to it.
Further north MISR is closer to the principal plane. The solar zenith angle range in both cases is about 15
degrees. Data and plots produced by the Xsatview software (M. Barnsley and K. Morris, University College
London) from approximate representations of the satellite orbits.
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Figure 2: Principal plane values of the kernels for three di�erent solar zenith angles. Dash-dot pattern,
Ross-thin; dash pattern, Ross-thick; short dash pattern, specular; solid, Li-dense; long dash-dot, Li-sparse.
The Li-sparse kernel is calculated for b=r = 1 and h=b = 2 (round, low crown), the Li-dense kernel for
b=r = 2:5 and h=b = 2 (prolate, high crown).
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Figure 3: Observed versus modeled re
ectances in the red and near-infrared bands for four distinct types of
land cover. Forests are represented by a dense hardwood forest (coverage 79 percent), barren terrain by a
plowed �eld, grasslike vegetation by dense (irrigated) wheat (coverage 70 percent, leaf area index 4.0), and
broadleaf non-forest vegetation by a soybean data set (coverage 99 percent, leaf area index 2.9). The �rst
three data sets were observed by Kimes et al. [1985, 1986], the latter by Ranson et al. [1985]. In the �rst
data set, the Li-dense kernel is predominant, in the second the Li-sparse kernel. In the third and fourth
data sets the Ross-thick kernel is predominant.
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Figure 4: Root band averaged mean square errors (RMSE) of �tting �ve kernel-based BRDF model variants
to bidirectional re
ectance data measured by Kimes [1983], Kimes et al. [1985, 1986], Deering et al. [1995]
and Ranson et al. [1985] for 4 di�erent land cover types: top, forests; second row, barren or sparsely
vegetated; third row, grasses and grasslike crops; bottom, broadleaf crops. Model codes are: N, Ross-thin;
K, Ross-thick; S, Li-sparse; D, Li-dense; MW, modi�ed Walthall.
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RMSE, White-Sky Albedo (Red and NIR), and Isotropic Reflectance Constant (Red and NIR)
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Figure 5: Root band-averaged mean square errors (RMSE), white-sky albedo (WSA) and the isotropic
model constant fi (nadir sun and view re
ectances, R-ISO) of �ve kernel-based BRDF model variants to
bidirectional re
ectance data measured by Kimes et al. [1986], and Ranson et al. [1985] for two di�erent
land cover types: forest and broadleaf crop. Model codes are: N, Ross-thin; K, Ross-thick; S, Li-sparse; D,
Li-dense; MW, modi�ed Walthall.
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APPENDIX F:

ASAS SCALING EXPERIMENTS FOR BRDF MODEL INVERSION

(SUMMARY OF A PAPER BY MULLER AND DISNEY)
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ASAS Scaling Experiments for BRDF Model Inversion

(Summary of a Paper by Muller and Disney)

It is extremely di�cult to extrapolate surface canopy directional re
ectance measurements to pixel IFoVs of
250m{1km which will be available with MODIS/MISR. Similarly it is important to establish what the linear-
ity ranges of BRDF model inversions are if we are to set up a global validation network for MODIS/MISR-
based BRDF or albedo.

There are two sources of airborne data which can be used to establish the scaling properties of the
"Ambrals" models: ASAS (Irons et al., 1991) and POLDER (Roujean et al., 1996) .

Preliminary results are presented here for the use of ASAS data to investigate these scaling properties.
A more comprehensive description of these experimental results will be described in (Muller and Disney,
1997).

ASAS data has been geometrically registered to sub-pixel accuracy using the methods described in
(Allison et al., 1994; Allison and Muller, 1992; Barnsley et al., 1995) . A schematic diagram of the method
is shown in Figure 1.

Two sites have been studied to date from the HAPEX-SAHEL experiment (Prince et al., 1995) : the
Southern Supersite millet area (hereafter referred to as SSS) and the West Central Supersite savannah/millet
area (hereafter referred to as WCSS).

The data were all atmospherically corrected using the "6S" scheme with the atmospheric optical depth
measurements performed by Halthore (see (Brown de Coulstoun et al., 1996) ) by employing the US Standard
atmosphere (1961) with a desert type aerosol. The aforementioned authors have suggested the use of a
tropical standard atmosphere with continental aerosol model which we have tested and which yields better
results. The data is currently being re-processed using this new atmospheric correction data. An example
of the "at surface" re
ectance is shown for the SSS in Figure 2.

The resultant "at surface" re
ectance data were spatially degraded using spatial averaging from the
original 3m resolution to 30m, 90m, 240m and 480m. The 9 look angles of ASAS only covered a 1.92 x 1.92
km area so the results at 480m are only marginal. In future the POLDER data with 100m pixels over these
same areas will be used to study the scaling up to 1km.

Each set of surface directional re
ectances were then inverted using the "Ambrals" models to provide a
per-pixel based model inversion. The BRDF models were solely chosen based on their minimum rmse. The
results for all four TM-equivalent spectral bands (blue, green, red and NIR) are shown in Figures 3{5 for
the SSS and Figures 10{12 for the WCSS, where only resolutions 3m, 90m and 240m were selected here to
serve as examples of the more extensive studies. For each model inversion an image was created of the rmse
which are shown in Figures 7{9 for SSS and Figures 14{16 for the WCSS.

Histograms of the occurrence of each of the 9 models for each spectral band are shown in Figure 6 for
the SSS and Figure 13 for the WCSS.

The SSS model inversions and more clearly in the rmse results show artifacts associated with the number
of looks which were available outside of the central region which appear to have an impact on model selection
from 3m to 30m. The WCSS show no such artifacts. The SSS millet area indicates that as the resolution
is degraded the RossThickLiDense kernels are preferentially chosen over the modi�ed Walthall model. A
similar behavior is also observed for the WCSS savannah/millet area with some slight evidence for a change
to RossThin at 480m.

The implications of this are that �eld canopy data or data taken from ASAS may produce di�erent
model inversion results than that observed at MODIS/MISR wavelengths. This will be tested for all 6
HAPEX-SAHEL sites in future and the results compared with those from the POLDER instrument.
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Figure 1: Schematic diagram of sub-pixel registration scheme employed to register multi-
ightline ASAS
data to the same (nadir) image pixel co-ordinate system.
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ASAS SSS Millet reflectance image - line 101, row 1, nadir, 3/9/92, green band

Figure 2: Green band (TM 2) ASAS image of nadir for the HAPEX-SAHEL Southern Supersite (SSS)
acquired on 3 September 1992.
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Model Number - 3m resolution1 9

Blue, green, red and NIR bands, in raster order, showing the spatial variation of the ’best’choice of model in each band,
where choice was made on the basis of lowest rmse in each pixel.

 Models are:

1. LiDenseModis                                6. RossThin
2. LiSparseModis                               7. RossThin_LiDenseModis
3. RossThick                                      8. RossThin_LiSparseModis
4. RossThick_LiDenseModis             9. Modified Walthall
5. RossThick_LiSparseModis  

Figure 3: Mosaic of four band inversion SSS images showing model selection for each original 3m pixel from
"Ambrals". Notice the dominance of the modi�ed Walthall model selection at the blue and NIR wavelengths.
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Model Number - 90m resolution1 9

Blue, green, red and NIR bands, in raster order, showing the spatial variation of the ’best’choice of model in each band,
where choice was made on the basis of lowest rmse in each pixel.

 Models are:

1. LiDenseModis                                6. RossThin
2. LiSparseModis                               7. RossThin_LiDenseModis
3. RossThick                                      8. RossThin_LiSparseModis
4. RossThick_LiDenseModis             9. Modified Walthall
5. RossThick_LiSparseModis  

Figure 4: Mosaic of four band inversion SSS images showing model selection for each original 90m aver-
aged pixels from "Ambrals". Notice the dominance of the modi�ed Walthall model selection at the blue
wavelength.
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Model Number - 240m resolution1 9

Blue, green, red and NIR bands, in raster order, showing the spatial variation of the ’best’choice of model in each band,
where choice was made on the basis of lowest rmse in each pixel.

 Models are:

1. LiDenseModis                                6. RossThin
2. LiSparseModis                               7. RossThin_LiDenseModis
3. RossThick                                      8. RossThin_LiSparseModis
4. RossThick_LiDenseModis             9. Modified Walthall
5. RossThick_LiSparseModis  

Figure 5: Mosaic of four band inversion SSS images showing model selection for each original 240m aver-
aged pixels from "Ambrals". Notice the dominance of the modi�ed Walthall model selection at the blue
wavelength.
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RMSE - 3m resolution0 0.1

SSS Millet - blue, green, red and nir bands, in raster order, showing the spatial variation of the
rmse on which the choice of each model is made. 

Stats of each frame:

Blue:           n = 154722 mean = .0047 SD = .002 Min. = 9.3e-05 Max. = .032
Green:        n = 154722 mean = .0040 SD = .001 Min. = 1.4e-04 Max. = .046
Red:            n = 154722 mean = .0052 SD = .002 Min. = 1.7e-04 Max. = .65
NIR:            n = 154722 mean = .0070 SD = .004 Min. = 6.5e-04 Max. = .10 

Figure 7: Mosaic of four band SSS rmse showing the rmse with 3m inversions for each model selected. Notice
the banding across the centre which represents a greater number of looks than other areas.
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RMSE - 90m resolution0 .051

SSS Millet - blue, green, red and nir bands, in raster order, showing the spatial variation of the
rmse on which the choice of each model is made. 

Stats of each frame:

Blue:           n = 198 mean = .0036 SD = .001 Min. = 1.4e-04 Max. = .0097
Green:        n = 198 mean = .0050 SD = .003 Min. = 3.8e-04 Max. = .0178
Red:            n = 198 mean = .0073 SD = .005 Min. = 7.0e-04 Max. = .030
NIR:            n = 198 mean = .0130 SD = .009 Min. = 13e-04 Max. = .051 

Figure 8: Mosaic of four band SSS rmse showing the rmse with 90m inversions for each model selected.
Notice the banding is reduced with respect to 3m and 30m inversions across the centre which represents a
greater number of looks than other areas.
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RMSE - 240m resolution0 .03

SSS Millet - blue, green, red and nir bands, in raster order, showing the spatial variation of the
rmse on which the choice of each model is made. 

Stats of each frame:

Blue:           n = 36 mean = .0039 SD = .0007 Min. = 2.1e-03 Max. = .0052
Green:        n = 36 mean = .0066 SD = .0016 Min. = 3.3e-03 Max. = .0096
Red:            n = 36 mean = .0104 SD = .0032 Min. = 6.0e-03 Max. = .0170
NIR:            n = 36 mean = .0190 SD = .0060 Min. = 8.0e-03 Max. = .0291 

Figure 9: Mosaic of four band SSS rmse showing the rmse with 90m inversions for each model selected.
Notice the banding has now disappeared.
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Blue, green, red and NIR bands, in raster order, showing the spatial variation of the ’best’ choice of model in each band,

where choice was made on the basis of lowest rmse in each pixel. It is (unsurprisingly) dominated by the Walthall model.

Models are:

1. Isotropic LiDenseModis                 6.     "     RossThick LiSparseModis

2.     "     LiSparseModis                     7.     "     RossThin

3.     "     RossThick                            8.     "     RossThin LiSparseModis

4.     "     RossThin                             9.     "     Walthall (4 parameter)

5.     "     RossThick LiDenseModis

1 9Model number

WCSS Fallow - model choice at full (3m) resolution

Figure 10: Mosaic of four band inversion WCSS images showing model selection for each original 3m pixel
from "Ambrals". Notice the dominance of the modi�ed Walthall model selection at all wavelengths and the
strong contrast only for the lower left corner at blue wavelengths.
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Blue, green, red and NIR bands, in raster order, showing the spatial variation of the ’best’ choice of model in each band,

where choice was made on the basis of lowest rmse in each pixel. It is (unsurprisingly) dominated by the Walthall model.

Models are:

1. Isotropic LiDenseModis                 6.     "     RossThick LiSparseModis

2.     "     LiSparseModis                     7.     "     RossThin

3.     "     RossThick                            8.     "     RossThin LiSparseModis

4.     "     RossThin                             9.     "     Walthall (4 parameter)

5.     "     RossThick LiDenseModis

1 9Model Number

WCSS Fallow - model choice at 90m resolution

Figure 11: Mosaic of four band inversion WCSS images showing model selection for each original 90m pixel
from "Ambrals". Notice the dominance of the RossThickLiDense model selection at all wavelengths.
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.

Blue, green, red and NIR bands, in raster order, showing the spatial variation of the ’best’ choice of model in each band,

where choice was made on the basis of lowest rmse in each pixel. It is (unsurprisingly) dominated by the Walthall model.

Models are:

1. Isotropic LiDenseModis                 6.     "     RossThick LiSparseModis

2.     "     LiSparseModis                     7.     "     RossThin

3.     "     RossThick                            8.     "     RossThin LiSparseModis

4.     "     RossThin                             9.     "     Walthall (4 parameter)

5.     "     RossThick LiDenseModis

1 9Model Number

WCSS Fallow - model choice at 240m resolution

Figure 12: Mosaic of four band inversion WCSS images showing model selection for each original 240m pixel
from "Ambrals". Notice the dominance of the RossThickLiDense model selection at all wavelengths.
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Blue, green, red and NIR bands, in raster order, showing the spatial variation of the rmse, on which the choice of

model is made. NB ***the greyscale is inverted*** i.e. darker areas correspond to higher rms errors.

Stats of each frame:

Blue:    n=156946 mean=.003763 SD=.001034 Min=.001197 Max=.020071

Green: n=156946 mean=.004807 SD=.001323 Min=.001312 Max=0.02363

Red:  n=156946 mean=.006201 SD=.002015 Min=.001677 Max=.054222

NIR:   n=156946 mean=0.00771 SD=.002307 Min=.003115 Max=.040761

0 60x10-3
RMSE

WCSS Fallow - rmse in model selection at 3m resolution

Figure 14: Mosaic of four band WCSS rmse showing the rmse with 3m inversions for each model selected.
Notice the lack of any banding as most of the area was covered with the same number of looks.
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Blue, green, red and NIR bands, in raster order, showing the spatial variation of the rmse, on which the choice of

model is made. NB ***the greyscale is inverted*** i.e. darker areas correspond to higher rms errors.

Stats of each frame:

Blue:    n=1674 mean=.003866 SD=.001333 Min=.000174 Max=.012121

Green: n=1674 mean=.005179 SD=.001816 Min=.000282 Max=.016755

Red:  n=1674 mean=.006593 SD=.002422 Min=.000247 Max=.019871

NIR:    n=1674 mean=.008743 SD=.003382 Min=.000203 Max=.031837

0 35x10
-3RMSE

WCSS Fallow - rmse in model selection at 90m resolution

Figure 15: Mosaic of four band WCSS rmse showing the rmse with 90m inversions for each model selected.
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.

Blue, green, red and NIR bands, in raster order, showing the spatial variation of the rmse, on which the choice of

model is made. NB ***the greyscale is inverted*** i.e. darker areas correspond to higher rms errors.

Stats of each frame:

Blue:    n=36 mean=.004195 SD=.001338 Min=.002073 Max=.006569

Green: n=36 mean=.006229 SD=.001743 Min=.003191 Max=.009263

Red:  n=36 mean=.009075 SD=.002667 Min=.004554 Max=0.01508

NIR:    n=36 mean=.011941 SD=.002479 Min=.008005 Max=.016868

0 20x10
-3

RMSE

WCSS Fallow - rmse in model selection at 240m resolution

Figure 16: Mosaic of four band WCSS rmse showing the rmse with 240m inversions for each model selected.
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APPENDIX G:

LANDSAT-TM SPECTRAL ALBEDO EXTRACTION (SUMMARY

OF A PAPER BY DISNEY, MULLER ET AL.)
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Landsat-TM Spectral Albedo Extraction

(Summary of a Paper by Disney, Muller et al.)

An attempt has been made to use the ASAS "at surface" re
ectances to create a large area BRDF/albedo
map for use in scaling studies and simulation studies for GCM and hydrological applications. See (Disney
et al., 1997; Muller et al., 1997b) for a fuller discussion.

The overall processing scheme is shown in Figure 1 which includes details of the atmospheric correction
scheme for the ASAS data. (see Appendix XXX for a fuller discussion of this issue).

The resultant ASAS "at surface" radiances for each of the 4 TM spectral bands (1{4) were spatially
degraded to TM 30m resolution and registered to the geocoded surface re
ectance TM pixels provided by
the NASA EDC DAAC to support MODIS Land group validation e�orts. The radiometric range of the pixels
from ASAS were then adjusted to �t the TM values. All of these pixels were then used as training statistics
for the 3 regions covered in the SSS (millet, savannah/fallow and tiger bush). A Maximum Likelihood
classi�cation was then performed of the TM pixels using these training statistics and for each classi�ed
pixel, the original albedo value associated with that pixel was used to predict a spectral albedo for all the
classi�ed TM pixels.

The resultant TM spectral albedo maps are shown in Figure 2 (using the modi�ed Walthall model) and
for the RossThick-LiSparse model in Figure 3. Notice the AGRYMET agricultural square which is clearly
in both images as well as the tiger bush in the lower left corner. The spectral albedo values are di�erent
dependent on the model with the RossThick-LiSparse model values being higher.

In future the "Ambrals" model inversions will be used from the 30m scaling experiments to repeat the
experiment. Narrowband to broadband conversion will be made using the method proposed by (Brest and
Goward, 1987) and the resultant broadband albedos will be compared to �eld solarimeter-based albedos
provided by Simon Allen and his colleagues (Allen et al., 1994) at the Institute of Hydrology, Wallingford
for validation. A similar procedure will also be tested using the POLDER data.
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ASAS
co-registered

radiance

6s
atmospheric
correction

 BRDF model
 inversion 
algorithms

BRDF models
ranked by
r.m.s. error

Hemispherical
integration

Spectral
"albedo maps"

’at ground’
reflectances

 Optical depth
information

Degrade nadir ASAS
  images to TM res.; 

select same area 
in TM;  match 

radiometric info.

Derive training stats
 from transformed 
ASAS data; use to 
’classify’ TM data

 Results mapped
 through from
 small areas to

 TM scenes

Figure 1: Schematic 
ow diagram of the LANDSAT-TM spectral albedo derivation using the ASAS direc-
tional re
ectances including the production of "at surface" re
ectances using the atmospheric optical depth
measurements from Halthore.
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Bands 1,2,3 and 4 (left to right, top to bottom) of albedo, mapped from ASAS model inversions up to

TM-scale. The BRDF kernels used in this case were the Isotropic, WalthallLinMultCos, WalthallSqMult

and WalthallSqSum (i.e. Modified walthall model).

A 3 x 3 convolution filter was passed over the images to remove high frequency noise in the images.

The stats of the raw images are as follows:

Band 1 - n=129414 mean=.048008 SD=.018297 Min=7.96096e-05 Max=.082251

Band 2 - n=129414 mean=.120139 SD=0.03855 Min=.000873 Max=.177322

Band 3 - n=129414 mean=.181225 SD=.061481 Min=.000972 Max=.290579

Band 4 - n=129414 mean=.348764 SD=.094025 Min=.005047 Max=.439253

Albedo maps of SSS at TM resolution

Figure 2: Mosaic of LANDSAT-TM spectral albedos for the four spectral bands using a modi�ed Walthall
inversion model for the ASAS \at surface" directional re
ectances.
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Bands 1,2,3 and 4 (left to right, top to bottom) of albedo, mapped from ASAS model inversions up

to TM-scale. The BRDF kernels used in this case were the Isotropic, RossThick and LiSparseModis.

A 3 x 3 convolution filter was passed over the images to remove high frequency noise in the images.

The stats of the raw images are as follows:

Band 1 - n=175011 mean=.049615 SD=.018106 Min=.000334 Max=.082018

Band 2 - n=175011 mean=.118947 SD=.035053 Min=.000972 Max=.177611

Band 3 - n=175011 mean=.180364 SD=.057442 Min=.001486 Max=.295627

Band 4 - n=175011 mean=.351156 SD=.072161 Min=.004554 Max=.446293

Figure 3: Mosaic of LANDSAT-TM spectral albedos for the four spectral bands using a RossThickLiSparse
model inversion for the ASAS "at surface" directional re
ectances. Notice the higher values of spectral
albedo values calculated cf. modi�ed Walthall in previous �gure.
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APPENDIX H:

MONTE CARLO-RAY TRACING SIMULATIONS OF ASAS (SUM-

MARY OF A PAPER BY MULLER, DISNEY AND LEWIS)
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Monte Carlo-Ray Tracing Simulations of ASAS (Summary of a Paper by Muller, Disney

and Lewis)

To understand the relationship of the semi-empirical parameters to �eld-based biophysical measurements,
a Monte Carlo ray-tracing system (Burgess et al., 1995; Lewis and Muller, 1990; Lewis and Muller, 1992;
Lewis et al., 1991) is being employed to simulate radiance �elds both at the "above canopy" level and at
airborne altitudes. The objective is to understand the role of leaf-level and soil-level variations in re
ectance
and its relationship to the underlying biophysical properties of the vegetation (especially LAI) which appear
as parameters in the semi-empirical kernels of "Ambrals".

Millet plants have been geometrically modelled using biometric measurements of tiller/leaf shape and
form made at the SSS millet site by Lewis, Barnsley and Morris in September 1992. Six di�erent plants
have been modelled.

Leaf directional re
ectance and transmittance measurements were made in the �eld but these proved
unreliable. Instead the PROSPECT model was used to simulate a Lambertian leaf re
ectance using a
Chlorophyll content of 0.75.

Figure 1 shows an example of the resultant MCRT simulations for a perfectly di�use "white" sky. as a
function of solar zenith angle at the 4 TM spectral band equivalents. A Lambertian spectral re
ectance was
used for the underlying soil taken from the HSIS database. The "hot spot" region was sampled at higher
angular sampling. 100 plant models were simulated on a regular grid-spacing of 1.5m using all 6 plant
models randomly placed in the grid. The resultant simulation shows the averaged results for the whole area
and clearly shows the "hot spot" and the variation of behavior as a function of wavelength.

The e�ect of using a directional soil re
ectance data-set from Wim van Leeuven (van Leeuwen et al.,
1996) shows the importance of including a directional soil re
ectance model. Figure 2 shows a comparison
of two MCRT simulation at ASAS 3m pixel size at the ASAS viewing angles. The �rst with the HSIS
Lambertian soil re
ectance and the second using the �eld spectro-radiometric data.

Finally, a comparison was made between a MCRT simulation at 3m at the ASAS viewing angles using
the directional soil re
ectance data and the actual ASAS data in Figure 3. The agreement is reasonable
for NIR but becomes poorer as we move towards the blue. The reason for this lies both in the di�culty in
atmospherically correcting the ASAS data and the arti�cial grid layout of the synthetic plant models.

In future, stereo photogrammetric measurements acquired by Lewis, Barnsley and Morris in September
1992 will be used to increase the realism of the plants as well as the individual plant spatial distribution to
try to improve the agreement with the ASAS data. This is discussed in more detail in (Muller et al., 1997a).

The MCRT and Botanical Plant Modelling System allows for the calculation of plant biophysical data
such as LAI which will be compared to the values derived from the semi-empirical kernels of "Ambrals"
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APPENDIX I:

MONITORING LAND SURFACEDYNAMICS IN THEHAPEX-SAHEL

AREA USING KERNEL-DRIVEN BRDF MODELS AND AVHRR

DATA (SUMMARY OF A PAPER BY RUIZ DE LOPE AND LEWIS)
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Monitoring Land Surface Dynamics in the HAPEX-Sahel Area Using Kernel-Driven

BRDF Models and AVHRR Data

(Summary of a Paper by Ruiz de Lope and Lewis)

As part of an European Union consortium investigating land cover change in the Sahel, researchers at UCL
have also been investigating the application of the Ambrals BRDF model to AVHRR data. Six months
(May{October 1992) of LAC derived surface re
ectance data of the HAPEX-Sahel grid square have been
processed using the model and aspects of model �t and model selection investigated (Lewis and de Lope,
1996).

The results indicate that the Ambrals kernels are able to describe the shape of the BRDF (processed
on a 16-day window, 1-day step, moving window) well over the period of study. Relatively large errors
in model �t can, however, occur during the rainy season, due to variations in the surface re
ectance on
a sub-16-day timescale. In spite of this, the trends in normalized re
ectance, albedo and BRDF model
parameters are generally well-maintained. The temporal trajectory of these model parameters is currently
being investigated with a view to providing information on variations in the surface cover.

The main kernel selection criterion in Ambrals, the RMSE in model �t, is found in many cases not
to provide very consistent results (either temporally and spatially). It is understood that Ambrals will
have to make use of additional information in aiding kernel selection, and so the team at UCL have been
investigating the issues involved. Currently, an approach that considers temporal consistency in the main
selection criterion, weighted by the RMSE is being tested. Early results indicate that this is indeed promising,
and that it can be implemented e�ciently within Ambrals.

In addition to this research, work is currently underway testing the application of Ambrals to the AVHRR
Path�nder (PAL) dataset for Africa north of the Equator. Two years of data have been processed so far
(1989 and 1992) and the 1992 results compared with the LAC data over HAPEX-Sahel described above.
While many of the trends observed appear to be similar in the two datasets, the magnitude of the trends
are very di�erent, probably mainly due to the poor atmospheric correction of the data (PAL corrects for
only Rayleigh scattering and ozone absorption).

Were here present selected �gure from this work. Figures 1a and 1b show the modeled values of millet
re
ectance for AVHRR band one for restricted sampling in May using the derived Ross-Thick and Li-Dense
kernels. The re
ectance values were modeled under the same viewing and illumination angles as the AVHRR
data were measured. Additionally, each graph shows a continuous extrapolation of re
ectance values under
constant solar zenith and relative azimuth angles (equivalent to their monthly averages) in order to facilitate
interpretation of the BRDF trends. Figure 1c illustrates the case of June. Figure 2a and 2b show similar
plots for tiger bush and fallow as land covers. Figures 3a to 3c show di�erences in the black-sky albedo as a
function of solar zenith angle found for di�erent selections of kernels with similarly small RMSEs; Figure 3a
shows a case with large discrepancies, Figures 3b and 3c with small ones.

Figure 4 shows a temporal pro�le of RMSE obtained from �tting the AVHRR band 1 data from the
Central East millet site to the model variants using a 29-day window. The symbols indicate the vlue of
the RMSE obtained for the kernel combinations providing good �ts, usually two-parameter model variants.
Figure 5a shows the temporal pro�les of normalized re
ectance (bidirectional re
ectance at the 6-month
period average solar zenith for nadir viewing) for the Central East millet site. Figure 5b shows the isotropic
parameter, which is equivalent to the nadir bidirectional re
ectance for nadir illumination, and, as such, is
an extrapolated quantity. These �gurs show that kernel selection is less important for interpolated results
than for extrapolated retrievals.

Figures 6a and 6b show the results of applying the minimum-RMSE criterion for model selection to the
retrieval of AVHRR band 1 normalized re
ectance of the millet Central East site. The symbols appearing
in the bar labeled \RMSE selection" represent the model selected each date.
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APPENDIX J:

ESTIMATING LAND SURFACE ALBEDO IN THE HAPEX-SAHEL

SOUTHERN SUPER-SITE: INVERSION OF TWO BRDF MODELS

AGAINST MULTIPLE ANGLE ASAS IMAGES (SUMMARY OF A

PAPER BY BARNSLEY ET AL.)
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Estimating Land Surface Albedo in the HAPEX-Sahel Southern Super-Site: Inversion

of Two BRDF Models Against Multiple Angle ASAS Images

(Summary of a Paper by Barnsley et al.)

Researchers at University College London recently applied the Roujean-RossThin kernel-driven semiempirical
BRDF model and the empirical modi�ed Walthall BRDF model to directional image data obtained for a
semiarid region of West Africa near Niamay, Niger (Barnsley et al., 1996; Lewis et al., 1995). In this study,
NASA's Advanced Solid-state Array Spectrometer (ASAS) (Irons et al., 1991) acquired image data from
an aircraft platform over the HAPEX-Sahel west central, east central and southern super-sites on various
dates during September 3{17, 1992. The ASAS acquires images at ten sensor view angles during a single
overpass | one at nadir and nine others at 15� increments between 75� forward and 60� aft of the aircraft
platform on which it is mounted. These images are recorded in 64 continuous narrow spectral wavebands in
wavelengths ranging from the visible to the near-infrared. Spatial resolution is about 4 m. Data processing
involved manipulating the multiple{view{angle and multiple 
ight{line ASAS image data in four steps: (i)
geometric registration; (ii) radiometric correction; (iii) atmospheric correction; and (iv) estimation of the
surface (spectral) BRDF and albedo through BRDF model inversion.

Geometric registration of the multiple-view-angle and multiple 
ight-line data was perhaps the most
problematic task. Standard polynomial warping techniques are generally unable to cope with the very high
frequency, localized geometric distortions present in most airborne scanner images. Consequently, Barnsley
et al. (1996) used an automated image registration procedure based on \interest point" extraction and
area-based matching of small patches of image around each interest point (Allison et al. 1991, Allison
and Muller 1992) to de�ne an initial polynomial mapping followed by pixel patch-by-pixel patch (typically
15 x 15 pixels) matching using adaptive least-squares image correlation (Otto and Chau, 1989). These
techniques are capable of registering multiple view-angle ASAS images to subpixel accuracy (<0.4 pixels)
globally throughout the scene (Allison et al. 1994). In this case, each of the o�-nadir images was registered
to the nadir view. Radiometric correction was e�ected using gain values provided by NASA to convert
the instrument's raw DN values to spectral radiances. Atmospheric correction was applied by use of the 6S
atmospheric correction code (Vermote et al. 1994) with atmospheric parameters drived from sun photometer
data (Brown de Colstoun et al., 1996).

With registered and corrected data at hand, the Walthall and Roujean models were inverted and �tted
to the data on a pixel-by-pixel basis (Barnsley et al., 1996). This allowed the construction of images of the
weights associated with each term of each model. The nadir re
ectance images in the blue and near-infrared
bands have low contrast and appear noisy. In these bands, the models seem to be �tting noise rather than
signal.

In contrast, the green and red bands show a coherent scene structure. The �rst parameters from both
Walthall and Roujean models are strongly related to overall brightness and thus mimic the nadir re
ectance.
The second and third parameters of the Walthall model show little spatial structure, although some bright
and dark spots seem to correlate well with particular patches in the nadir image. In contrast, the Roujean
model shows strong spatial structure in both the �rst and second parameters. The second parameter is
the weight of the geometric kernel, which seems to vary inversely with the �rst parameter. This indicates
that the BRDF becomes more isotropic with increasing brightness, which is not unexpected if multiple
scattering increases with brightness. The �ne texture in the images of the third parameter may be related
to �ne errors in registration, rather than real changes in BRDF within the scene. Overall, the weight of the
third parameter is quite low, indicating that volume scattering is not important for these surfaces. Since
vegetation is quite sparse over most of the target area, this is not unreasonable. These results demonstrate
that a pixel-by-pixel inversion of empirical/semiempirical models is possible, and that the model parameters
vary systematically in a meaningful spatial pattern.

We present a selection of �gures from this study. Figure 1 shows the multiple-view angle imagery used
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registered to the nadir view and atmospherically corrected. Figure 2 shows spatial images of the retrieved
BRDF model parameters, and of albedo, using the modi�ed Walthall model, Figure 5 the same using the
Roujean-RossThin model that is similar to the Ambrals BRDF model. Figure 3 shows a sample �t in several
wave bands, Figures 4 and 6 the respective histograms os RMSEs found in the inversions carried out on a
pixel by pixel basis.



AVHRR Inversions Using Kernel-Driven BRDF Models 247

60
45

30
15

0
-1

5
-3

0
-4

5

555nm 645.6nm 862nm

Figure 1: The multiple-view angle spectral bidirectional re
ectance factor data sets used in the study. Each
of the imahes is 128 by 128 pixels in size and has been extracted from co-registered and atmospherically
corrected full-scene ASAS data. The �gure shows the magnitude of the angular variations in detected
re
ectance. The angles reported in this �gure are the nominal ASAS camera angles.
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Figure2:Spatiallyreferenceddatasetsofthemodi�edWalthallBRDFmodelparametersandthederived
spectralalbedo.Thesedatahavebeenproducedbyinvertingthemodi�edWalthallmodelagainstthe
spectralbidirectionalre
ectancefactordatashownintheprevious�gure.Note,inparticular,thespatial
patternsthatareevidentinthevaluesofthemodelparameters.Thesearecloselyrelatedtospatialvariations
inthelandcoverandareboradlymaintainedinthespectralalbedodata.
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Figure 3: Plot showing the �ts between the measured and the modelled spectral bidirectional re
ectance
factor data for the modi�ed Walthall BRDF model.
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Figure 4: Histograms of the RMSE of the �t between the modi�ed Walthall BRDF model and the multi-angle
ASAS data in bands 15 (555nm), 24 (645.6nm) and 45 (892nm).
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Figure 5: Spatially referenced data sets of the Roujean-RossThin semiempirical BRDF model parameters
and the derived spectral albedo. These data have been produced by inverting the Roujean-RossThin model
against the spectral bidirectional re
ectance factor data shown in �gure 1. Note that the spatial patterns
evident in this �gure are very similar to those obtained using the simpler empirical model (�gure 2).
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Figure 6: Histograms of the RMSE of the �t between the Roujean-RossThin BRDF model and the multi-
angle ASAS data in bands 15 (555nm), 24 (645.6nm) and 45 (892nm).


